
State of the Practice in Software Testing Teaching
in Four European Countries

Porfirio Tramontana
University of Naples Federico II

Naples, Italy
ptramont@unina.it

Beatriz Marı́n
Universitat Politècnica de València

València, Spain
bmarin@dsic.upv.es

Ana C. R. Paiva
University of Porto & INESC TEC

Porto, Portugal
apaiva@fe.up.pt

Alexandra Mendes
University of Porto & HASLab / INESC TEC

Porto, Portugal
alexandra@archimendes.com

Tanja E. J. Vos
Universitat Politècnica de València

Open Universiteit, The Netherlands
tvos@dsic.upv.es

Domenico Amalfitano
University of Naples Federico II

Naples, Italy
domenico.amalfitano@unina.it

Felix Cammaerts
KU Leuven

Leuven, Belgium
felix.cammaerts@kuleuven.be

Monique Snoeck
KU Leuven

Leuven, Belgium
monique.snoeck@kuleuven.be

Anna Rita Fasolino
University of Naples Federico II

Naples, Italy
fasolino@unina.it

Abstract—Software testing is an indispensable component of
software development, yet it often receives insufficient attention.
The lack of a robust testing culture within computer science
and informatics curricula contributes to a shortage of testing
expertise in the software industry. Addressing this problem
at its root —education— is paramount. In this paper, we
conduct a comprehensive mapping review of software testing
courses, elucidating their core attributes and shedding light on
prevalent subjects and instructional methodologies. We mapped
117 courses offered by Computer Science (and related) degrees in
49 academic institutions from four Western European countries,
namely Belgium, Italy, Portugal and Spain. The testing subjects
were mapped against the conceptual framework provided by the
ISO/IEC/IEEE 29119 standard on software testing. Among the
results, the study showed that dedicated software testing courses
are offered by only 39% of the analysed universities, whereas
the basics of software testing are taught in at least one course
at every university. The analysis of the software testing topics
highlights the gaps that need to be filled in order to better align
the current academic offerings with the real industry needs.

Index Terms—Software testing, Testing education, Testing
Teaching, Mapping of courses

I. INTRODUCTION

As the importance of software in our society continues to
grow, the impact of software failures becomes more significant
[1], [2]. In the US alone, the cost of poor software quality
has been estimated at $2.08 trillion for 2020 [3]. Although
software testing is a critical component in ensuring the quality
of software and reducing the risks associated with software
failures, it is still often overlooked. There have been efforts
to mitigate the software failures reported by Krasner [3],
such as the Common Vulnerabilities and Exposures (CVE)
[4] which aims to catalogue publicly known vulnerabilities
and exposures in software. Despite this, a report by Failwatch

has still identified 606 software failures affecting 3.6 billion
people [1].

The industry faces several testing challenges related to
test case design, scripting, execution, reporting, management,
automation and even the lack of general knowledge [5], [6],
[7]. There is also a lack of testing culture in organisations.
Programmers may understand the importance of testing, but
they often put it off because of the pressure to deliver quickly
[7]. In addition, the quality of test cases has been found to be
influenced by the domain knowledge and testing expertise of
the person performing the testing process [6].

We advocate that the problem should be tackled at its
root: education. However, software testing is often neglected
in computer science courses. For example, curricula spend
more time on more ‘glamorous’ topics [8], such as artificial
intelligence.

At university level, several efforts have been made to im-
prove teaching techniques for testing in order to better prepare
students for industry, as reported by [9] and [10]. Nevertheless,
there are still many problems with teaching testing, such as
the disconnection between theory and practice, which leads
to less interest on the part of students; classroom examples
are far removed from real-world projects, or they are focused
on a particular testing technique; students’ lack of testing
experience may lead to them not being able to perform the
testing process with all the steps in industry; students are not
confident in their testing skills, etc.

Therefore, when seeking a solution to this problem in
education it is important to consider three perspectives: the
needs of students, academia, and industry [11], [12]. Regard-
ing industry, a categorisation of industry needs for testing
should be identified. For academia, an instructional design for

https://orcid.org/0000-0003-3264-185X
https://orcid.org/0000-0001-8025-0023
https://orcid.org/0000-0003-3431-8060
https://orcid.org/0000-0001-8060-5920
https://orcid.org/0000-0002-6003-9113
https://orcid.org/0000-0002-4761-4443
https://orcid.org/0000-0002-0037-3865
https://orcid.org/0000-0002-3824-3214
https://orcid.org/0000-0001-7116-019X

early/seamless teaching testing materials should be developed.
Regarding students, the cognitive models of students during
the practice of software testing should be taken into account.
Taking these three perspectives together, teaching capsules
can be proposed that aim at early, seamless integration into
education with appropriate instructional design.

This paper takes a deeper look at the academic perspective
by investigating the state of the practice in software testing
education in academic institutions. This will allow for a more
seamless integration of educational software testing tools into
current curricula. There are some works that have already
investigated the state of software testing education in higher
education [13], [14], [15], [16]. However, these works focus
on individual countries or on the world as a whole, i.e. none
of the existing studies focus on the European context. As a
result, a more general overview of the state of software testing
education in Europe is lacking in the literature.

To fill this gap, we decided to carry out a study investigating
the state of the practice in software testing education in
academic institutions in the context of four Western European
countries. We conducted this study as part of the ENACTEST
Project [17] which aims to improve the current practices in
software testing education. Indeed, one of the goals of the
ENACTEST Project researchers is to propose new software
testing teaching materials, the so-called capsules, that will be
aligned with the industry and students’ learning needs [12].

In this paper we present the results of the study where we
focused on the higher education courses offered by academic
institutions belonging to Belgium, Italy, Portugal, and Spain.
We chose these countries for convenience, since they coincide
with the countries of four of the partners of the ENACTEST
Project. The aim of the study is to understand the diffusion of
software testing-related courses in the considered context, the
aspects of software testing that are most commonly taught, and
course-specific teaching characteristics including Educational
Level, Number of credits, Duration, Student Assessments,
Testing topics taught, and Reference books. Thus, the con-
tributions of this paper are: (1) the current state of testing
education practice in the considered European countries, (2)
the topics that are commonly taught, and (3) the identification
of improvements needed for testing education in computer
science or informatics curricula.

The contribution of this work is useful for academics,
researchers, and practitioners. Academic institutions can use
our results to improve their relevant curricula by adding
testing topics that are commonly taught in these European
countries. Practitioners can use the information provided here
to prioritise training on specific topics that are not usually
taught in testing courses. Researchers can use our results to
develop new approaches that can reduce teachers’ workload in
teaching testing and improve students’ learning effectiveness.

The paper is organised as follows. Section II presents related
works that investigate the state and diffusion of testing courses
in computer science curricula. Section III illustrates the aim
of our study, with the corresponding research questions, target
population, and data collection procedures. Section IV presents

the results of our study and discusses threats to validity.
Section V provides a discussion of the most commonly taught
testing topics, the reference books used in testing courses,
and future research directions. Finally, Section VI presents
our main conclusions and future works.

II. RELATED WORK

A systematic mapping study conducted in 2019 [9], has
analysed 293 papers on the integration of software testing
in introductory programming courses. The study reports that
research on these topics can be divided into several categories,
namely, teaching methods, course materials, programming
assignments, programming process, program/test quality, con-
cept understanding and tools. The study also provided several
benefits and drawbacks on the integration of software testing
into programming courses. Benefits include: timely feedback,
objective assessment and improvement in students’ program-
ming performance. Drawbacks include additional workload
for course staff, student’s reluctance to conduct testing and
programming courses already being packed. Nevertheless, this
work does not provide evidence of the number of courses
that include testing topics in programming courses, neither
the institutions that are offering the courses.

A survey published in 2010 [13], conducted among ran-
domly chosen universities in Canada and the US revealed
that many computer science degree programs did not include
dedicated courses for teaching software testing (ST) in their
curricula. The findings indicated that two out of the top five
Canadian universities and seven out of ten universities in the
US did not offer standalone software testing courses.

A systematic mapping of the literature on testing education
was published in 2020 [10], which was focused on exploring
approaches to improve testing education. This literature review
analyzes 204 papers from 1992 to 2019. The results show
that there are several approaches to improve software testing
education, which have been evaluated either in specific testing
courses or integrated in non-specific testing courses. Never-
theless, the authors recognize that the type of testing activities
performed in the courses are a very small sub-set of courses
taught at universities since educators usually do not publish
the organization properties of testing courses. Moreover, a
clear characterization of the software testing courses and the
corresponding universities is missing in this work.

The state of undergraduate software testing education in
Brazil in 2012 was published in [14]. This study involved
a comparison of the course recommendations provided by
the Brazilian Computer Society (SBC) with the curricula of
25 Brazilian universities. Additionally, the study extended its
analysis to include 21 international universities from vari-
ous countries, including the United States (13), the United
Kingdom (3), Switzerland (2), China (1), the Netherlands
(1), and Singapore (1), in which the course recommendations
of the Association for Computing Machinery (ACM) were
considered. In both the Brazilian and international university
contexts, the analysis revealed a common issue: there was
an insufficient allocation of lectures dedicated to teaching

software testing, indicating that software testing practices were
not adequately covered.

A replicated study was performed in 2020 [18]. This re-
search involved a survey of courses that incorporated topics
related to Software Testing in 28 Brazilian universities. Their
findings revealed that specific courses dedicated to Software
Testing were offered in 68% of the universities. However, it
was noted that, with the exception of only two universities,
such courses were optional rather than mandatory.

In a more recent study [19], a global perspective on how
instructors addressed the topic of Software Testing was per-
formed. Although global, it is worth noting that Africa was not
included. The study focused on various aspects, such as course
content, teaching methods, the use of educational resources,
and examination methods for students. One of the noteworthy
findings from this study was the presence of commonalities in
the subjects covered. Specifically, functional testing emerged
as the most frequently taught topic. Additionally, their study
revealed that the traditional approach of classroom-based
teaching was the prevailing method used in this context.

A systematic survey of syllabi for courses related to soft-
ware testing offered in Sweden in 2022 was presented in
[16]. This study examined course offerings from 25 Swedish
universities that provided degrees in Computer Science or
related fields. Their findings indicated that among these uni-
versities, 14 currently provide specific courses in software
testing. Furthermore, they observed that approximately 32%
of these individual courses were available at the undergraduate
level. Moreover, about 28% of the universities offered courses
aimed at specialized training in testing. In the majority of the
universities surveyed, dedicated software testing courses made
up roughly 5% of the total degree credits offered.

A recent study [15] investigated the curricula of 100 highly
ranked universities in Asia, America and Europe. Results in
this study indicates that just half of computer science curricula
has software testing courses. However, a deep analysis of the
specific topics of testing taught in these courses is lacking.

Despite the importance of having practical knowledge of
courses about software testing with their main characteristics,
the related work reveals that there isn’t a clear characterization
of software testing courses in the context of Europe. We
address this gap in this work by performing a mapping review
of highly ranked academic institutions of a set of representative
countries in Europe.

III. STUDY DESIGN

In this study we were interested in knowing the state of
the practice of teaching software testing in academic institu-
tions from four European countries, namely, Belgium, Italy,
Portugal and Spain. Although other types of institutions, like
higher-education schools and professional bachelors, also offer
curricula with software testing, we did not consider them since
they were out from the scope of this study.

We used the Goal-Question-Metric template [20] to define
the goal of the study as follows: Analyse software testing
courses at the academic level and their characteristics for

the purpose of understanding the state of the practice with
respect to software testing education from the point of view of
researchers and professors in the context of ranked universities
in European countries.

A. Research Questions

In order to achieve the goal of our study, we have formulated
the following research questions:

RQ1 How common are software testing related courses in the
considered academic context?

RQ2 What are the educational organisational properties of
these courses?

RQ3 What aspects of software testing are most commonly
taught?

The first question aims to provide an overview of the courses
that focus entirely on Software Testing (ST), and courses that
include other topics but also Software Testing topics (NST) in
computer science related degrees.

The second question is designed to characterise the courses
on the basis of their educational organisational properties.
This question aims to provide an overview of whether these
courses are offered at either Bachelor or Master level in the
academic institutions considered. In addition, this question
aims to provide information on teaching methods (theoretical
or practical) and the course characteristics, i.e. the course
name, year, the number of credits, duration in terms of hours,
assessment methods, and reference books.

The last question aims to investigate the topics that are more
often taught in the mapped courses and also the ones that
are missing in those courses. To properly identify the testing
topics, we use the internationally agreed ISO/IEC/IEEE 29119
series of standards for software testing. We chose this series
of standards because they are intended to be used by any
organization when performing any form of software testing
and using any software development life cycle. In particular,
we referred to the 2022 revision of the ISO/IEC/IEEE 29119
International Standard on Software and Systems Engineering
— Software Testing, part 1 [21], which provides a general
introduction to software testing, the role of software testing in
V&V processes, how testing can be implemented, the concepts
of test plan and test strategies, including test levels, test types
and test design techniques.

B. Target Population

We decided to systematically search for academic courses
teaching software testing topics in each of the European
countries considered. Unlike the case of Sweden analysed by
Barrett et al. [16], we could not find integrated national repos-
itories of offered courses for any of the analysed countries, so
we adopted the search approach described below.

In order to have a first list of the universities that offer com-
puter science subjects in their degrees, we took into account
the Scimago Institutions Ranking1, which ranks academic

1Scimago Institutions Ranking, https://www.scimagoir.com/rankings.
phphttps://www.scimagoir.com/rankings.php

https://www.scimagoir.com/rankings.php
https://www.scimagoir.com/rankings.php
https://www.scimagoir.com/rankings.php

TABLE I
NUMBER OF UNIVERSITIES AND COURSES INCLUDED IN THE ANALYSIS

Spain Italy Belgium Portugal Overall
Universities in
SJR ranking 62 70 10 29 171

Randomly Selected
Universities

19
(31%)

20
(29%)

3
(30%)

7
(24%)

49
(29%)

Analysed
Courses 28 44 10 35 117

institutions based on their research performance, innovation
output, and societal impact as measured by their web visibility,
allowing queries for specific countries, years and scientific
fields. We focused on the 2023 rankings2 of Computer Science
Universities. The rankings included 62 institutions from Spain,
70 from Italy, 10 from Belgium and 29 from Portugal, for
overall 171 universities.

We decided to construct our population by selecting a
random sample equal to approximately 30% of all the 171
listed universities. We therefore selected at random 49 out of
171 universities (equal to 29%).

For each university, we examined the bachelor’s and mas-
ter’s degrees offered through their institutional websites to
identify courses related to software testing. As a priority, we
analysed bachelor’s and master’s degrees related to computer
science (i.e. Computer Engineering, Computer Science, Soft-
ware Engineering, etc.). Therefore, we manually scanned the
courses offered, looking for names that could be related to test-
ing such as “Software Testing”, “Verification & Validation”,
“Software Quality”, etc. We also considered “Software Engi-
neering” and “Programming” courses, as they may typically
deal with the basics of testing.

In order to filter only relevant courses, we applied the
following inclusion criteria:

• The course syllabus contains a description of the course
topics.

• The course syllabus is written in English or in the
language of one of the ENACTEST Project partners,
namely: Spanish, Italian, Portuguese and Dutch.

• The course syllabus includes testing topics.
In addition, we applied the following exclusion criterion:

• Cancelled courses (not active in 2022 and 2023).
At the end of this selection process, we found 117 courses

that satisfied the inclusion and exclusion criteria and admitted
them to the successive steps.

The number of universities listed in the Scimago Ranking
and the number of universities we analysed for each country
are shown in Table I. The Table also reports the number of
analysed courses for each country, which were 28 from Spain,
44 from Italy, 10 from Belgium and 35 from Portugal.

C. Data Collection

To facilitate the collection of course information from each
country, researchers who understand the language of each

2https://www.scimagoir.com/rankings.php?sector=Higher+educ.\&area=
1700&ranking=Overall

country searched for the courses of the ranked universities
and completed a data extraction form. We made sure to have
several researchers per language. In this way, we ensured the
correct identification of the courses and the validity of the
information obtained.

The researchers studied the general characteristics of the
courses by analysing the publicly available information, the
syllabus and the curricula offered on the official websites of
their academic institutions. The data extraction form we used
to collect course information included the following fields:

• Country
• Name of the university
• Name of the degree
• Degree Level (e.g. Bachelor or Master)
• Course Name
• Course Year
• Teacher Name
• Number of course credits (EC)
• Number of hours (distinguished between Theory and Lab

hours, when the information is available)
• Student Assessment Methods
• Course Syllabus
• Focus on Software Testing (Complete or Partial)
• List of testing topics included in the course
• Reference books
The focus of a Software Testing course can be either

Complete or Partial, depending on the amount of software
testing topics offered in the course. We classified courses as
Software Testing courses (ST) if they had a majority focus
on testing topics (i.e. more than 75% of topics correspond
to testing), and as Non-Software Testing courses (NST) if
software testing topics were only a minority of the course
topics. This classification was finalised by reading the course
syllabi. This process was carried out by two researchers who
analysed all the courses and information and classified them
as ST or NST.

With regard to the testing topics offered, we mapped
them against the conceptual framework for testing offered
by the ISO/IEC/IEEE 29119 standard on Software Testing.
We focused on the dynamic testing approaches according
to the standard, distinguishing: Test Design Techniques, Test
Practices, Testing Levels, and Testing Types (see Table II).

Finally, two other researchers analysed the classifications
collected from the courses to report the results.

The collected information are available online at
https://doi.org/10.5281/zenodo.10467218

IV. RESULTS

A. RQ1: How common are software testing related courses in
the considered academic context?

Overall we found 117 courses that include software testing
topics in the 49 considered universities: we classified 22 of
them as Software Testing (ST) courses and the remaining
95 ones as courses including some software testing topics
(NST). Table III reports the number of mapped courses for
each country.

https://www.scimagoir.com/rankings.php?sector=Higher+educ.\&area=1700&ranking=Overall
https://www.scimagoir.com/rankings.php?sector=Higher+educ.\&area=1700&ranking=Overall
https://doi.org/10.5281/zenodo.10467218

TABLE II
TESTING APPROACHES ACCORDING TO THE ISO/IEC/IEEE 29119

STANDARD ON SOFTWARE TESTING

Test Design Technique Testing Practice Testing Type
Specification Based Model-based testing Functional testing

Equivalence Partitioning Scripted testing Accessibility testing
Classification tree method Exploratory testing Compatibility testing
Boundary value analysis Experience-based testing Conversion testing
Syntax testing Manual testing Disaster recover testing
Combinatorial testing A/B testing Installability testing
Decision table testing Back-to-back testing Interoperability testing
Cause-effect graphing Mathematical-based testing Localization testing
State transition testing Fuzz testing Maintainability testing
Scenario testing Keyword-driven testing Performance related testing
Use case testing Automated testing Portability testing
Random testing Other Procedure testing
Metamorphic testing Reliability testing
Requirements-based testing Security testing
Structure Based Testing Level Usability testing

Statement testing Unit testing Other
Branch testing Integration testing
Decision testing System testing
Branch condition testing System integration testing
Branch cond. comb. testing Acceptance testing
MC/DC testing Other
Data flow testing

Experience Based
Error guessing

Other

TABLE III
NUMBER OF ST AND NST COURSES FOUND IN THE UNIVERSITIES

SELECTED OF THE CONSIDERED COUNTRIES

#Universities #ST Courses #NST Courses
Spain 19 7 21
Italy 20 5 39

Portugal 7 9 26
Belgium 3 1 9

Total 49 22 95

If we consider the ST courses and their diffusion in our
population, 19 out of the 49 universities offered at least one of
them. Only the Universities of Lisbon, Aveiro, and Coimbra,
in Portugal, offered more than one distinct ST course, but
in different educational programs. On average, we found ST
courses in 39% of all the mapped universities. Regarding the
95 NST courses, 46 out of 49 universities offered at least
one course (94%) that addresses in part software testing. If
we consider both types of courses, 14 out of 49 universities
(29%) offer both ST and NST courses.

Regarding the diffusion of ST courses in the different
countries, 7 of them were present in 19 Spanish universities,
5 courses in 21 Italian ones, 9 in 7 Portuguese universities,
and one course in one of the 3 mapped Belgian universities.
If we consider the percentage of ST courses with respect to
the number of analysed universities per country, we have ST
courses in 37% of Spanish universities, 24% of Italian ones,
33% of Belgian ones, and 71% of Portuguese universities. By
comparing these results with those reported in the literature,
we find that the frequency of ST courses in Spain, Belgium and
Italy is lower than in Sweden, where Barrett et al. [16] recently
found 14 ST courses in 25 different universities (56%). Only
the frequency of ST courses in Portugal was 71% and larger
than in Sweden.

TABLE IV
ST COURSE- OVERVIEW CHARACTERISTICS

Co. University Course Name Deg. Yr.
BE Antwerpen Software testing MSc 1
ES Barcelona (Autonoma) Test and software Quality BSc 3
ES Madrid (Complutense) Software Testing BSc 3
ES Madrid (Politécnica) Software validation and verification MSc 1
ES Oviedo Software Quality, Validation and Verification BSc 4
ES Alacant Planning and Testing of Software Systems BSc 3
ES Valencia (Politecnica) Software testing MSc 2
ES Zaragoza Validation and Verification BSc 3
IT Bergamo Testing e Verifica del Software MSc 2
IT Firenze Advanced Programming Techniques MSc 1
IT Milano Verifica e Convalida del Software MSc 1
IT Milano (Bicocca) Software Quality MSc 1
IT Napoli (Federico II) Software Testing MSc 1
PT Aveiro Robust Software MSc 1
PT Aveiro Software Testing and Quality Control BSc 3
PT Aveiro Software Testing MSc 1
PT Coimbra Analysis of Software Artifacts MSc 1
PT Coimbra Software Quality and Dependability MSc 1
PT Lisbon Software Verification and Validation MSc 1
PT Lisbon Software Testing and Validation MSc 1
PT Minho Testing and Validation of Information Systems MSc 1
PT Porto Software Testing, Verification and Validation MSc 2

B. RQ2 : What are the educational organisational properties
of the courses?

Tables IV and V provide an overview on the characteristics
of respectively the ST and NST courses we mapped. In this
section we analyse the main characteristics of the courses,
including their Educational Level, Curriculum, Year, Course
Names, Number of Credits and Assessment Methods.

1) Educational Level, Curriculum and Year of courses:
In terms of educational level, 6 ST courses are offered at
the bachelor level (always in the final year) and 16 at the
master level. In terms of curriculum, 15 courses are offered
by Computer Science curricula, whereas the remaining 7 ones
belong to Computer Engineering ones.

66 out of 95 NST courses are at the bachelor level, while
the remaining 29 courses are at the master level. As to
the educational programs, 47 belong to Computer Science
curricula, 46 are in Computer Engineering curricula, and the
two remaining ones are offered in other scientific fields.

It is interesting to note that NST courses are equally
offered in the context of Computer Science and Computer
Engineering curricula, while ST courses are more common
in Computer Science than in Computer Engineering ones. A
possible explanation of this datum is that CS curricula are
typically more focused on software development topics than
CE curricula that usually have to give space also to non-
software related topics from other engineering areas.

Figure 1 illustrates the current offering of ST and NST
courses from our population, by distinguishing them on the
basis of the corresponding Educational Level (Master or
Bachelor) and Year. As the Figure shows, NST courses are
most often offered in the third year of bachelor’s degrees
or in the first year of master’s degrees. ST courses, on the
other hand, are always offered starting from the third year of
bachelor’s degrees and are mostly present in the first year of
master’s degrees.

2) Course Names : We analysed the courses in order to find
the most frequent terms included in their names. For the ST
courses, the most common terms were: “Software Testing” (10

TABLE V
NST COURSE- OVERVIEW CHARACTERISTICS

Co. University Course Name Deg. Yr.
BE Antwerpen Project software engineering BSc 1
BE Antwerpen Software engineering BSc 3
BE Gent Software Development & Operations BSc 3
BE Leuven (KUL) Digital Design Concepts BSc 2
BE Leuven (KUL) Object-gericht programmeren BSc 1
BE Leuven (KUL) Objectgerichte softwareontwikkeling BSc 2
BE Leuven (KUL) Programmeertechnieken BSc 2
BE Leuven (KUL) Software engineering en webtechnologie BSc 3
BE Leuven (KUL) Software-ontwerp BSc 3
ES Alcalá Software Engineering BSc 1
ES Barcelona (Autonoma) Software Engineering BSc 2
ES Barcelona (Politecnica) Software Architecture BSc 3
ES Barcelona (Politecnica) Software Architecture BSc 3
ES Barcelona (Politecnica) Software Architecture BSc 3
ES Castilla La Mancha Software engineering II BSc 3
ES Castilla La Mancha Software engineering II BSc 3
ES Granada Software Development BSc 3
ES Madrid (Autónoma) Software Engineering BSc 3
ES Madrid (Carlos III) Software Development BSc 2
ES Madrid (Rey Juan Carlos) Software Quality BSc 3
ES Málaga Introduction to Software Engineering BSc 1
ES Murcia Software Quality BSc 4
ES Oviedo Quality of Product and Processes MSc 1
ES Pais Vasco Software Engineering II BSc 3
ES Sevilla Design and Testing I BSc 3
ES Sevilla Desing and Testing II BSc 3
ES Valencia Software production methods MSc 1
ES Valencia (Politecnica) Audit, Quality and Management of Information Systems MSc 1
ES Valencia (Politecnica) Audit, Quality and Management of Information Systems MSc 1
ES Zaragoza Software Engineering BSc 3
IT Benevento Software Engineering BSc 3
IT Bergamo Software Engineering BSc 3
IT Brescia Software Engineering BSc 3
IT Campobasso Software Engineering BSc 3
IT Firenze Programming Methodologies BSc 2
IT Genova Advanced Programming Techniques BSc 3
IT Genova Functional and Security Testing Techniques MSc 1
IT Genova Software Engineering MSc 1
IT Genova Software Engineering Fundamentals BSc 3
IT Milano (Bicocca) Software Analysis and Design BSc 2
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering 2 MSc 1
IT Milano (Politecnico) Software Engineering 2 MSc 1
IT Milano (Politecnico) Software Engineering 2 MSc 1
IT Modena Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Project Management and Evolution MSc 1
IT Napoli (Unicampania) Software Engineering BSc 3
IT Padova Software Engineering BSc 3
IT Pisa Software Engineering BSc 3
IT Roma (Sapienza) Software Design BSc 2
IT Salerno Ingegneria, Gestione ed Evoluzione del Software BSc 3
IT Salerno Management and Evolution of Software Projects MSc 1
IT Salerno Software Dependability MSc 2
IT Salerno Software Engineering BSc 3
IT Torino Istituzioni di Sviluppo Software MSc 1
IT Torino (Politecnico) Object Oriented Programming BSc 2
IT Torino (Politecnico) Object Oriented Programming BSc 2
IT Torino (Politecnico) Object Oriented Programming BSc 2
IT Torino (Politecnico) Software Engineering MSc 1
IT Torino (Politecnico) Software Engineering MSc 1
IT Trento Software Engineering BSc 2
IT Verona Software Engineering Fundamentals MSc 1
PT Aveiro Analysis and Exploration of Vulnerabilities MSc 1
PT Aveiro Digital Accessibility and Compliance MSc 1
PT Aveiro Software Engineering BSc 2
PT Aveiro Usability and User Experience MSc 1
PT Coimbra Design and Development of Secure Software MSc 1
PT Lisbon Software Engineering BSc 3
PT Lisbon Programming labs BSc 1
PT Lisbon (ISCTE) Agile Software Development BSc 2
PT Lisbon (ISCTE) Software Engineering BSc 3
PT Lisbon (Nova) Object Oriented Programming BSc 1
PT Lisbon (Nova) Software Construction and Verification MSc 1
PT Lisbon (Nova) Software Engineering BSc 3
PT Lisbon (Nova) Software Quality MSc 1
PT Minho Cybersecurity MSc 1
PT Minho Informatics Laboratories I BSc 1
PT Minho Information Systems Security Engineering MSc 1
PT Minho Object Oriented Programming BSc 2
PT Minho Security Engineering MSc 1
PT Minho Security Technologies MSc 1
PT Minho Software Systems Development BSc 3
PT Porto Programming BSc 1
PT Porto Software Design and Testing Laboratory BSc 2
PT Porto Software Engineering BSc 2
PT Porto Secure Software Engineering MSc 2
PT Porto Security in Software Engineering MSc 1
PT Porto Software Engineering Laboratory MSc 1

Fig. 1. Courses by Educational Level and Year

times), “Verification and Validation” (8 times), and “Software
Quality” (5 times). In a few cases, the name of the course may
include less typical terms, such as in courses named “Analysis
of Software Artifacts”, “Planning and Testing of Software
Systems”, “Robust Software”, and “Advanced Programming
Techniques”.

Regarding the NST course names, the most frequent terms
were “Software Engineering” (44 times), “Programming” (20
times), “Software Architecture Design” (10), “Security” (9),
“Software Quality” (7), “Software Project Management” (6),
and “Agile Software Development” (1). These results confirm
that software testing topics are usually introduced in Software
Engineering courses, but also in many Programming, Software
Architecture design, Security, and Quality courses.

3) Number of Course Credits (EC): We analyzed the num-
ber of European Credits (EC) associated with each course,
EC being a standard system for measuring the effort required
by a student for that course. We also tried to analyse the
number of hours of each course, distinguishing between the
theoretical, practical, and laboratory hours. Unfortunately, this
information could not be extracted from the websites of each
course analysed, as it was not always available or no standard
description according to these categories was provided.

In terms of the number of ECs, almost all of the 22 mapped
ST courses correspond to 6 ECs, with only three exceptions
of 5, 4 and 2 ECs respectively. The average EC value of ST
courses is 5.68 credits.

We made a similar analysis of the NST courses. They have
EC values ranging from 3 to 12 ECs, with an average of 6.75
credits. However, it was not possible to determine exactly how
much of the course time was spent on testing.

4) Assessment Methods: Regarding the assessment, we
collected the different approaches used by the courses and
abstracted 6 types of assessment methods. We classified the
methods into: Open questions, Closed questions, Exercises,
Homework, Project, and Discussion. Open and Closed ques-
tions assessments are based on a questionnaire. Exercises
assessments require students to complete practical exercises.
Homework assessments are based on the evaluation of home-
work assigned to students. Project means that the assessment is

based on a project usually carried out by students organized in
teams. Discussion represents a more traditional method based
on a talk or presentation on topics provided by the course.

Figure 2 summarizes the types of assessment methods and
the percentages of ST and NST courses adopting them. As the
Figure shows, ST and NST courses present similar percentages
for each method.

Fig. 2. Frequency of Assessment Methods in Mapped ST and NST Courses

Regarding ST course assessments, the majority of courses
(14 out of 22, 64%) rely on a Project, whereas a Discussion
is used in 11 out of 22 courses (50%). The use of Open
questions or Exercises (including either written exercises or
lab exercises) is quite frequent (respectively in 32% and 27%
of courses), whereas Homework or Closed questions are less
common (respectively in 9% and 5% of courses).

Analogously for NST courses, the most common assessment
method is the Project (in 59% of courses) followed by the
Discussion (49%), Open Questions (38%), written or lab
Exercises (27%), Homework (8%) and Closed Questions (only
in 2% of courses). For 3 NST courses (3%) we could not
find detailed information about their assessment methods and
reported them as N/A.

The data we collected from the publicly available course
descriptions also shows that most of the mapped courses
adopt more than one assessment method. On average, ST
and NST courses adopt 1.86 and 1.87 methods, respectively.
Both assessment methods that are suitable for assessing the
knowledge of theoretical topics (like Open/Closed Questions
and Discussion) and other methods more suitable for assessing
practical skills (like Projects, Homework, and Exercises) are
typically used. This result confirms the dual nature (both
Theoretical and Practical) of most of the courses analysed.

C. RQ3: What aspects of software testing are most commonly
taught?

To answer this question, we reviewed the contents of the
syllabi available on the Web pages describing each course.
Our aim was to map the topics taught with respect to the

categories of Test Design Techniques, Test Practices, Testing
Levels, and Testing Types proposed by the ISO/IEC/IEEE
29119-1 Standard on Software Testing, that we reported in
Table II.

Since not all course syllabi conform to the Standard termi-
nology and many provide only high-level lists of test topics,
the involved authors had to investigate further to abstract
the topics covered, and sometimes they had to make some
interpretations. In the latter cases, a third author double-
checked the interpretations made by two authors to exclude
possible classification errors. For example, the terms ”black
box testing” and ”white box testing” were often found. In
these cases, terms were interpreted as Specification Based and
Structure Based test design techniques, respectively. In other
cases, only the term ”statement testing” was found and it was
assumed that the Structure Based category was also covered
in the course.

Table VI shows the number and percentage of ST courses
and NST courses in which each testing topic is covered.

1) Test Design Techniques: With respect to the three main
Standard categories of Test Design Techniques (e.g., Specifica-
tion Based, Structure Based, and Experience Based), we found
that they are included in 95%, 100%, and 9% of ST course
topics, respectively, indicating a slight prevalence of Structure
Based compared to Specification Based. As to the Specifica-
tion Based techniques, the most frequently taught topics are
Equivalence Partitioning (in 50% of ST courses), followed by
Boundary Value analysis (27%), Decision Table testing (27%),
Combinatorial testing (27%) and Random Testing (18%).
The Syntax testing technique is taught in 3 courses (14%)
while Cause-effect graphing and Metamorphic testing are both
mentioned in only 2 courses (9%). Surprisingly, the topics of
Use Case testing, Scenario testing, and Requirements-based
testing are only explicitly mentioned in one course each, but
we could not deduce whether they are actually so uncommon,
or they are rather described in the syllabi as belonging to the
more general category of Specification Based techniques.

Regarding the Structure Based techniques, the most fre-
quently taught are Statement testing (23%), Branch testing
(23%), Decision testing (18%), Branch Condition (18%),
Branch condition combination (18%) and MC/DC testing
(14%). Data-flow testing is also quite common, being taught
in 23% of ST courses.

As to the category of Experience Based, we encountered
it in only 2 ST courses (9%), while Error Guessing is never
mentioned.

Regarding testing techniques not explicitly mentioned in the
standard, we found 4 courses where mutation-based testing
techniques are taught and reported these in the category Other
of the Table (4 out of 22, 18% of courses).

Regarding the NST courses, since testing is not the main
focus of these courses, we often found in the syllabi only
references to generic test design techniques, like Specification
Based, found in 35 courses (37%), or Structure Based tech-
niques found in 29 (31%) of courses.

TABLE VI
TESTING TOPICS OCCURRENCE IN COURSE SYLLABI

ST % NST %
Test Specification Based 21 95% 35 37%

Design Equivalence Partitioning 11 50% 1 1%
Technique Classification tree method 1 5% 0 0%

Boundary value analysis 6 27% 2 2%
Syntax testing 3 14% 0 0%
Combinatorial testing 6 27% 2 2%
Decision table testing 6 27% 0 0%
Cause-effect graphing 2 9% 0 0%
State transition testing 8 36% 0 0%
Scenario testing 1 5% 0 0%
Use case testing 1 5% 0 0%
Random testing 4 18% 0 0%
Metamorphic testing 2 9% 0 0%
Requirements-based testing 1 5% 3 3%

Structure Based 22 100% 29 31%
Statement testing 5 23% 9 9%
Branch testing 5 23% 6 6%
Decision testing 4 18% 7 7%
Branch condition testing 4 18% 2 2%
Branch condition combination testing 4 18% 0 0%
MC/DC testing 3 14% 1 1%
Data flow testing 5 23% 0 0%

Experience Based 2 9% 0 0%
Error guessing 0 0% 0 0%

Other 4 18% 12 13%
Testing Model-based testing 7 32% 5 5%
Practice Scripted testing 3 14% 6 6%

Exploratory testing 3 14% 1 1%
Experience-based testing 1 5% 0 0%
Manual testing 3 14% 6 6%
A/B testing 0 0% 4 4%
Back-to-back testing 0 0% 0 0%
Mathematical-based testing 3 14% 0 0%
Fuzz testing 2 9% 0 0%
Keyword-driven testing 0 0% 0 0%
Automated testing 15 68% 20 21%
Other 6 27% 26 27%

Testing Unit testing 13 59% 48 51%
Level Integration testing 10 45% 22 23%

System testing 10 45% 18 19%
System integration testing 4 18% 0 0%
Acceptance testing 7 32% 12 13%
Other 4 18% 12 13%

Testing Functional testing 8 36% 40 42%
Type Accessibility testing 0 0% 1 1%

Compatibility testing 0 0% 0 0%
Conversion testing 0 0% 0 0%
Disaster recover testing 0 0% 0 0%
Installability testing 0 0% 0 0%
Interoperability testing 0 0% 0 0%
Localization testing 0 0% 0 0%
Maintainability testing 0 0% 0 0%
Performance related testing 4 18% 6 6%
Portability testing 0 0% 0 0%
Procedure testing 0 0% 0 0%
Reliability testing 0 0% 2 2%
Security testing 2 9% 9 9%
Usability testing 1 5% 1 1%
Other 5 23% 9 9%

2) Testing Practice: Automated Testing is the most com-
mon testing practice included in the syllabi of both types of
mapped courses. It is explicitly mentioned in 15 ST courses
(68%) and 20 NST courses (21%). This datum indicates that
automated testing is commonly taught in specialized courses
of testing but less frequently in non-specialized ones.

The second most common practice is Model-based testing,
which was found in 7 ST courses (32%) but only in 5 NST
courses (5%). Conversely, Scripted testing is taught in 3 ST
courses but also in 6 NST ones.

Other testing practices that are less frequently taught
in ST courses include Exploratory testing, Manual testing,
Mathematical-based testing (each of them in 3 ST courses),

Fuzz testing (in 2 courses) and Experience-based testing
(only in one ST course). Regarding NST courses, except for
6 courses mentioning Manual testing and a single course
mentioning Exploratory testing, none of the latter practices
was found in the mapped courses.

Overall, we found no mentions at all of Back-to-back and
Keyword-driven testing, while A/B testing is included in the
syllabus of only 4 NST courses.

We also observed mentions of ’Other’ common testing
practices, such as Regression Testing (in a total of 10 courses)
and Test Driven Development (in a total of 3 courses).

3) Testing Level: Regarding Testing Levels, there are dif-
ferent scenarios in ST and NST courses. In ST courses
Unit testing, Integration testing and System testing are often
included in the syllabi (respectively in 59%, 45% and 45%
of the mapped ST courses), whereas in NST courses Unit
testing (in 48 courses, 51%) is more frequent than Integration
testing (in 22 courses, 23%) and System testing (18 courses,
18%). Analogously, Acceptance testing was more often found
on average in ST courses (in 7 courses, 32%) than in NST
courses (12 courses, 13%). Finally, System Integration testing
was found only in 4 ST courses (18%).

4) Testing Type: Finally, regarding testing types, we found
that Functional testing was by far the most cited type of testing
in course syllabi: we found it in 8 ST courses (36%) and 40
NST courses (42%). According to the Standard [21], func-
tional testing is used to check the implementation of functional
requirements, while non-functional types of testing are used to
check that requirements in other areas, like performance and
security, are met.

However, based on the syllabus reviews and our own experi-
ence in software testing, we can assume that many ST and NST
courses are predominantly based on functional testing rather
than non-functional testing. As a consequence, the reference
to this type of testing by all these courses should be reported,
even if it is not explicitly declared.

The other 3 testing types that were sometimes found in the
mapped courses included Performance related testing (found
in 4 ST and 6 NST courses), Security testing (found in 2 ST
courses and 9 NST courses, mostly devoted to secure software
design and development) and Usability testing (only in one
ST course and in one NST course). Accessibility testing is
mentioned in a single NST course only.

The remaining types of testing proposed by the standard,
including Compatibility, Conversion, Disaster Recovery, In-
stallability, Interoperability, Localization testing, Maintainabil-
ity, Portability, Procedural, and Reliability testing, were not
mentioned at all.

D. Threats to validity

Although we planned and executed the mapping carefully,
some threats could affect the validity of the results [22], [23].

Construct Validity. The lack of a standard language and
terminology in the syllabi descriptions found on the Web could
affect the construct validity of the course mapping. To mitigate
this threat, we decided that two researchers who perfectly

understand the language of the course will gather the infor-
mation to ensure that the information is collected correctly
without misinterpretation, and we used the ISO/IEC/IEEE
29119 Standard to classify the subjects taught.

In addition, we are aware that educators may interpret some
terms reported in the syllabi in different ways, which could
threaten our study. For example, our collected data on hours
of theory and practice uses directly the information provided
online, without interpretation. Therefore, there is a risk that
different educators consider the terms differently. To mitigate
this threat, we intend to survey or interview teachers in future
work.

We also recognise that a possible threat is that the infor-
mation publicly available may not fully reflect the contents of
the courses. Regardless, these still provide a good indication
of the structure of each course and, as these are provided to
potential applicants, we assume that the information is most
likely valid and trusted.

Internal Validity. In order to minimize the threats asso-
ciated with processing the available course information, we
decided to only work with the public information available
on the websites. While all of the courses had basic infor-
mation available online and, therefore, none of the selected
universities’ programmes or courses had to be removed for
the lack of information, the level of detail provided varied. In
some courses, the information was abstract, making it more
challenging to obtain detailed information about the testing
topics covered in the course. To ensure the accuracy of the
interpretation of the online information, all the entries were
checked by at least two researchers and an extra researcher
in case of doubts. In addition, we make all the data collected
available to the other researchers to verify the validity of the
results.

External Validity. To avoid bias in the selection of uni-
versities, we randomly selected those ranked in Scimago,
which comprises universities that often have well-established
teaching practices and resources, so our study still reflects
trends and standards in teaching software testing that are likely
to be observed in other higher education institutions.

The courses we selected may not be generalized to other
countries, nor may they provide an accurate reflection of the
current general landscape of software testing education in
Europe at large. To mitigate this threat, we defined a protocol
for the selection of the universities and courses, and reported
the criteria and methods used for course selection, so that these
can be used by other researchers to replicate the study and
increase the body of knowledge of the state of the practice of
software testing teaching.

V. DISCUSSION

As to the diffusion of software testing courses investigated
in RQ1, the study results show that courses specifically
focused on software testing are available at only 39% of
the universities surveyed and are mostly offered at Master
degree level. This percentage is slightly lower that the one
reported by Ardic and Zaidman, who found software testing

dedicated courses in 50% of the top 100 of the Times Higher
Education university ranking [15], as well as lower than the
56% of universities with dedicated ST courses in the Sweden
context [16]. While it was noteworthy that software testing
fundamentals were included in at least one course at every
university (i.e., in 94% of surveyed universities), most of the
existing software testing techniques are not taught to students
and future IT professionals. This is far too limited considering
that we live in a world surrounded by software whose quality
could potentially disrupt our lives.

As to the pedagogical approaches investigated by RQ2, as
we stated before, we did not find the number of hours of the-
oretical classes and practical classes for each mapped course.
Nevertheless, for those for which we found this information
(59% of ST courses), we observe that they spend similar
amount of hours for theoretical and practical classes, with a
ratio of 1.03 between them. As it has been discussed in [24],
the emphasis in teaching testing should be placed primarily on
the practical part. This approach is both a more challenging
and attractive strategy for students, and also helps students
to develop the ability to apply testing concepts in real-world
development scenarios.

The results present interesting insights about assessment
methods in both ST and NST courses. Projects are used as the
assessment method in almost 60% of courses. This is aligned
with the practical experience needed to learn complex topics,
since during the development of projects students can practice
the application of concepts.

Regarding the information on reference books, we cannot
get a clear list of software testing books used. If we look at
the NST courses, they mainly use general software engineering
books. On the other hand, if we look at the ST courses, not all
of them provide information about the books, and those that
do, use a large variety of books related to the topics taught.

As regards the software testing topics that are most com-
monly taught (RQ3), specification-based and structure-based
Test Design techniques included in the ISO Standard are taught
in almost all the analysed courses, whereas the experience-
based category is present in only 2 of the 117 considered
courses. Analogously, as to the Testing Practices listed by the
Standard, the results of the mapping study show that only a
small percentage (3,41%) of courses teach exploratory testing
(4 out of 117 courses). Our analysis reflects that testing courses
of universities are more inclined towards the analytical school,
where the emphasis is on better testing through improved
precision of specifications in stead of the context-driven school
that emphasizes exploratory testing, which promotes concur-
rent learning, test design, and test execution [25].

A final consideration concerns the Testing Types that are
commonly taught. Our study revealed areas of deficiency that
require attention to bring current academic offerings closer to
the real needs of the industry. Some clear findings include
the lack of accessibility testing, security testing, and disaster
recovery testing, among others.

Our study can help academic institutions to understand the
gaps in the curriculum, and consider some ways to close

these gaps by paying attention to the underrepresented testing
topics and techniques. In addition, sharing this knowledge
can encourage collaborations between different educational
institutions.

VI. CONCLUSIONS

This paper presents a landscape of software testing teaching
practices in four Western European countries, based on the
mapping of 117 courses syllabi within 49 Universities.

Our analysis is based on the course descriptions provided
in the summer and autumn of 2023. The content of courses is
typically adjusted as time evolves. Therefore, the results have
to be considered as a snapshot of the situation in 2023.

With regard to related work (SLRs on software testing
education and mapping of software testing courses), our study
provides an updated overview of courses in four European
countries and contributes with a clear characterisation of the
academic properties of courses. To the best of our knowledge,
this is the first study based on the mapping of more than 100
courses and providing a fine-grained characterisation of testing
topics based on the 2021 revision of the ISO/IEC/IEEE 29119
International Standard on Software Testing.

A difficulty we have found in analyzing the academic char-
acteristics of courses is that the information is not provided in
a standardised way, nor do we have a consolidated repository
of courses in Europe. This challenged us to define a protocol to
search the information, starting with the partner countries from
the ENACTEST Project. Similarly to the Bologna Process3 the
European Credit Transfer and Accumulation System (ECTS)
that was adopted across the continent some years ago, a stan-
dard way of defining the academic characteristics of courses
should be systematically adopted to facilitate the analysis. We
consider this as an important future direction for educational
contexts.

In future work we intend to survey the teachers of the
courses to gather further information that did not emerge from
the analysis of the syllabi and to investigate the reasons for
the choices they made.

We also found that most courses focus exclusively on testing
according to the analytical school of thought. This is overly
restrictive and one-sided, especially in today’s rapidly evolving
technology landscape. With the proliferation of AI systems,
it is imperative that contextual approaches be incorporated
even more prominently. The emergence of AI introduces a set
of quality characteristics that go beyond traditional, clear-cut
specifications. Attributes such as intelligence, accountability,
and explainability are integral to AI testing and can only be
adequately assessed through context-based exploratory testing.
As AI technologies continue to shape our world, it will
become even more important for testing methodologies to
adapt and encompass these complex, context-dependent facets
to ensure that software testing education remains aligned with
the evolving needs of the industry.

3European Higher Education Area and Bologna Process,
https://www.ehea.info/index.php

The key takeaways from this study are:
• The systematic adoption of a standardized approach for

describing the academic characteristics of courses is
essential to streamline the analysis process of testing
courses and the reference books used.

• The use of projects is the most prevalent method of
assessing knowledge of testing practices, likely because
of its effectiveness.

• Inclusion of exploratory testing topics in course content
is necessary, which includes the context of the systems
instead of just emphasizing the precision of testing spec-
ifications.

• The evaluation of software testing topics may reveal
shortcomings that require attention to better align current
academic offerings with real industry needs that we are
currently investigating in the context of ENACTEST
Project.

• Increasing the academic offering of specialized software
testing courses may be necessary to improve the overall
preparation of students.

Immediate future work will consider the creation of capsules
to improve testing education in a seamless way across courses
of computer science curricula. These capsules will take into
account the less taught testing topics. We also plan to conduct
empirical studies to uncover students’ sensemaking during
testing, as well as to develop a cognitive model of testing that
may be useful for improving students’ learning effectiveness.

ACKNOWLEDGMENT

This work has been partially funded by ENACTEST (Euro-
pean innovation alliance for testing education), ERASMUS+
Project number 101055874, 2022-2025 and by GATT (GAm-
ification in Testing Teaching), funded by the University of
Naples Federico II Research Funding Program (FRA).

REFERENCES

[1] “Tricentis Software Fail Watch Finds 3.6 Billion People
Affected and $1.7 Trillion Revenue Lost by Software
Failures Last Year,” https://www.globenewswire.com/news-
release/2018/01/24/1304535/0/en/Tricentis-Software-Fail-Watch-
Finds-3-6-Billion-People-Affected-and-1-7-Trillion-Revenue-Lost-
by-Software-Failures-Last-Year.html, 2018, accessed: 2024-01-18.

[2] H. Krasner, “Cost of Poor Software Quality in the U.S.: A 2022 report,”
Consortium for Information and Software Quality TM (CISQTM), pp.
1–61, 2022, accessed: 2024-01-18. [Online]. Available: https://www.
it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/

[3] ——, “The cost of poor software quality in the US: A 2020 report,”
Proc. Consortium Inf. Softw. QualityTM (CISQTM), pp. 1–46, 2021.

[4] “CVE,” https://www.cve.org/, accessed: 2024-01-18.
[5] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloğlu, and S. Eldh,

“Exploring the industry’s challenges in software testing: An empirical
study,” Journal of Software: Evolution and Process, vol. 32, no. 8, 2020.

[6] K. Juhnke, M. Tichy, and F. Houdek, “Challenges concerning test case
specifications in automotive software testing: assessment of frequency
and criticality,” Software Quality Journal, vol. 29, pp. 39–100, 2021.

[7] A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “A study on
challenges of testing robotic systems,” in 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, 2020,
pp. 96–107.

[8] T. Cowling, “Stages in teaching software testing,” in 2012 34th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2012, pp.
1185–1194.

https://www.ehea.info/index.php
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/
https://www.cve.org/

[9] L. P. Scatalon, J. C. Carver, R. E. Garcia, and E. F. Barbosa, “Software
testing in introductory programming courses: A systematic mapping
study,” in 50th ACM Technical Symposium on Computer Science Ed-
ucation, 2019, pp. 421–427.

[10] V. Garousi, A. Rainer, P. Lauvås Jr, and A. Arcuri, “Software-testing
education: A systematic literature mapping,” Journal of Systems and
Software, vol. 165, 2020.

[11] B. Marı́n, T. E. J. Vos, A. C. Paiva, A. R. Fasolino, and
M. Snoeck, “ENACTEST-European Innovation Alliance for Testing
Education.” in RCIS Workshops, 2022. [Online]. Available: https:
//ceur-ws.org/Vol-3144/RP-paper5.pdf

[12] B. Marı́n, T. E. J. Vos, M. Snoeck, A. C. R. Paiva, and A. R.
Fasolino, “ENACTEST project - european innovation alliance for testing
education,” in Research Projects Exhibition Papers Presented at the 35th
International Conference on Advanced Information Systems Engineering
(CAiSE 2023), ser. CEUR Workshop Proceedings, vol. 3413, 2023, pp.
91–96. [Online]. Available: https://ceur-ws.org/Vol-3413/paper13.pdf

[13] V. Garousi and A. Mathur, “Current state of the software testing edu-
cation in north american academia and some recommendations for the
new educators,” in 2010 23rd IEEE Conference on Software Engineering
Education and Training, 2010, pp. 89–96.

[14] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “Cs curricula of the
most relevant universities in brazil and abroad: Perspective of software
testing education,” in 2015 International Symposium on Computers in
Education (SIIE), 2015, pp. 62–68.

[15] B. Ardic and A. Zaidman, “Hey teachers, teach those kids some soft-
ware testing,” in 5th International Workshop on Software Engineering
Education for the Next Generation (SEENG). IEEE, 2023, pp. 9–16.

[16] A. A. Barrett, E. P. Enoiu, and W. Afzal, “On the current state of aca-
demic software testing education in sweden,” in 2023 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 2023, pp. 397–404.

[17] “ENACTEST project,” https://enactest-project.eu, last accessed: 2024-
01-18.

[18] I. S. Elgrably and S. R. B. de Oliveira, “A diagnosis on software
testing education in the brazilian universities,” in 2021 IEEE Frontiers
in Education Conference (FIE), 2021, pp. 1–8.

[19] S. M. Melo, V. X. S. Moreira, L. N. Paschoal, and S. R. S. Souza,
“Testing education: A survey on a global scale,” in Proceedings of the
XXXIV Brazilian Symposium on Software Engineering, ser. SBES ’20.
Association for Computing Machinery, 2020, p. 554–563. [Online].
Available: https://doi.org/10.1145/3422392.3422483

[20] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[21] “Iso/iec/ieee international standard - software and systems engineer-
ing –software testing –part 1:general concepts,” ISO/IEC/IEEE 29119-
1:2022(E), pp. 1–60, 2022.

[22] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[23] P. Ralph and E. Tempero, “Construct validity in software engineering
research and software metrics,” in 22nd International Conference on
Evaluation and Assessment in Software Engineering, 2018, pp. 13–23.

[24] B. Marı́n, S. Alarcón, G. Giachetti, and M. Snoeck, “Tescav: An
approach for learning model-based testing and coverage in practice,” in
14th International Conference on Research Challenges in Information
Science, RCIS. Springer, 2020, pp. 302–317.

[25] N. Doorn, T. E. Vos, and B. Marı́n, “Towards understanding
students’ sensemaking of test case design,” Data and Knowledge
Engineering, vol. 146, p. 102199, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0169023X23000599

https://ceur-ws.org/Vol-3144/RP-paper5.pdf
https://ceur-ws.org/Vol-3144/RP-paper5.pdf
https://ceur-ws.org/Vol-3413/paper13.pdf
https://enactest-project.eu
https://doi.org/10.1145/3422392.3422483
https://www.sciencedirect.com/science/article/pii/S0169023X23000599
https://www.sciencedirect.com/science/article/pii/S0169023X23000599

	Introduction
	Related Work
	Study design
	Research Questions
	Target Population
	Data Collection

	Results
	RQ1: How common are software testing related courses in the considered academic context?
	RQ2 : What are the educational organisational properties of the courses?
	Educational Level, Curriculum and Year of courses
	Course Names
	Number of Course Credits (EC)
	Assessment Methods

	RQ3: What aspects of software testing are most commonly taught?
	Test Design Techniques
	Testing Practice
	Testing Level
	Testing Type

	Threats to validity

	Discussion
	Conclusions
	References

