
Camila Revival: VDM meets Haskell?

Joost Visser, J.N. Oliveira, L.S. Barbosa, J.F. Ferreira, and A. Mendes

Departamento de Informática, Universidade do Minho, Braga, Portugal
joost.visser@di.uminho.pt

http://www.di.uminho.pt/

Abstract. We have experimented with modeling some of the key con-
cepts of the VDM specification language inside the functional program-
ming language Haskell. For instance, VDM’s sets and maps are directly
available as data types defined in standard libraries; we merely needed to
define some additional functions to make the match complete. A bigger
challenge is posed by VDM’s data type invariants, and pre- and post-
conditions. For these we resorted to Haskell’s constructor class mech-
anism, and its support for monads. This allows us to switch between
different modes of evaluation (e.g. with or without property checking)
by simply coercing user defined functions and operations to different
specific types.

1 Introduction

Camila [2, 3] is “A System for Software Development using Formal Methods”
(http://camila.di.uminho.pt) developed and used by the Formal Methods
group from Braga in the early nineties1. The Camila specification language is a
dialect of VDM [14, 11]. Specification animation is provided via Xlisp generation
and its run-time system is based upon Henderson’s metoo [13] library, reimple-
mented and extended over Betz’ Xlisp interpreter [6]. This led to the locally
developed xmetoo interpreter (available since 1986) around which a more elabo-
rate system was designed — the Camila toolkit. This includes a language pro-
cessor, developed in Lex/Yacc/C, a LATEX-based pretty-printer, a LATEX-based
literate-programming module (camtex) and an (experimental) data refinement
laboratory based on the SETS [22, 23] calculus. An illustration of the capabilities
offered by the system can be found in [1].

This locally brewed system was shelved in favour of VDM-SL [11] (for spec-
ification) and Haskell [15] (for development) when these gained momentum in

? Supported by Fundação para a Ciência e a Tecnologia, POSI/ICHS/44304/2002.
1 The Camila project (1990-93) was funded by JNICT (Grant 169/90). Further de-

velopments were supported by the U.Minho Informatics Department and INESC
Group 2361. Camila was named after “Camilo Castelo Branco”, a famous 19th cen-
tury Portuguese novelist who lived in the Minho province. This choice of acronym
dates back to 1990, the year when the first version of Camila became available and
the centenary of Camilo’s death.

2 Joost Visser et al.

the late nineties, with the availability of software such as IFAD’s VDMTools and
Hugs/GHC, respectively.

Haskell and VDM have their own merits, being complementary in several
respects. Given the functional flavour of Camila and its proximity to VDM,
the aim of the Camila Revival effort is to let Haskell and VDM meet, so that
advantages of their relative merits are taken. In a sense, the rôle played by Lisp
in the Camila legacy code is to be taken by Haskell this time.

Work in the Camila Revival started by rewriting in Haskell the Camila
standard library (itself an extension of the metoo kernel). This led to the CPrelude
library which, as reported in [17] and available from the UMinho Haskell Li-
braries2, includes the animation of the algebras of finite sets and finite maps,
both implemented over Haskell’s FiniteMap module.

More recently, reference [16] describes how VDM-SL code is to be encoded
in monadic Haskell, the effort being in designing an interpreter-level software
architecture able to cope, in a flexible way, with those features of VDM-SL
and VDM++ [12] which Haskell doesn’t support directly. These include partial
behaviour (e.g. datatype invariants and pre-/post-conditions) and persistence
(local state). The effort here has been to separate these ingredients and treat
them as effects captured by dedicated monads, such as the error, state, and I/O
monads. A monadic model of VDM-SL in Gofer, a precursor of Haskell, was
proposed earlier by [19].

In the current paper, we experiment with an improvement over the monadic
modeling of VDM features of [16] and [19]. In particular, we show how switching
between evaluation modes can be controlled with parameterized monads. The
parameters are introduced at the type level, which allows such switching to be
done statically and without adapting any function declarations.

As a running example, we will use the VDM specification of stacks of odd
integers, shown in Figure 1.

2 Monadic invariants and conditions

In VDM, datatypes can be constrained by providing a predicate as datatype
invariant together with the structural definition. Functions can be constrained on
their input type by providing a predicate on that type as pre-condition. Likewise,
a predicate on result and input types can be specified as post-condition.

A straightforward way of adding datatype invariants, pre- and post-conditions
to Haskell programs would be to weave invocations to the predicates that model
them into the function definitions. However, this has two drawbacks.

1. The function definitions become more complex, since they need to be aug-
mented with appropriate dataflow for checking conditions and taking appro-
priate actions when conditions are validated.

2. There is no way of influencing the type of action taken on condition violation,
except by changing the weaved-in code. In particular, when a prototype has

2 See http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila.

Camila Revival: VDM meets Haskell 3

types

Stack = seq of int

inv s = forall a in set elems s & odd(a);

functions

empty : Stack -> bool

empty(s) == s = [];

push : int * Stack -> Stack

push(p,s) == [p] ^ s

pre odd(p) ;

pop : Stack -> Stack

pop(s) == tl s

pre not empty(s);

top : Stack -> int

top(s) == hd s

pre not empty(s);

Fig. 1. Running example: a VDM specification of stacks of odd integers. We use VDM-
SL/VDM++ surface syntax in the Camila revival, while the Camila dialect is kept as
well, for continuity.

evolved into a deliverable system, property testing can be turned off only at
the cost of numerous changes throughout the code.

To avoid these drawbacks, we will use monads to encapsulate the checking be-
haviour. To this end, we introduce a type class to capture invariants, as well as
a monad and a parameterized monad transformer to encapsulate checking and
reporting behaviour.

2.1 Constrained datatypes

To model datatype invariants in Haskell, we follow [20, 16] and introduce the
type class CData (for Constrained Data), as follows:

class CData a where
-- | Invariant as boolean function.
inv :: a -> Bool
inv a = True -- default

The CData type class has as its single member a boolean predicate inv on the
datatype being constrained.

An example of a constrained datatype is the stack of odd numbers of Figure 1
which is specified in Haskell as follows:

4 Joost Visser et al.

newtype Stack = Stack { theStack :: [Int] }
instance CData Stack where

inv s = all odd (theStack s)

Thus, we use a newtype definition with a single constructor Stack and destructor
theStack. The invariant is specified as an instance of the CData type class.
We do not use a Haskell type synonym to model stacks, because the instance
specification would then not constrain just stacks, but any list of integers that
might occur in our system.

Datatype constraints propagate through products, sums, lists, etc, as the
following definitions illustrate:

instance (CData a, CData b) => CData (a,b) where
inv (a,b) = (inv a) && (inv b)

instance (CData a, CData b) => CData (Either a b) where
inv (Left a) = inv a
inv (Right b) = inv b

Similar definitions can be provided to make datatype constraints propagate
through other datatype constructors of Haskell’s standard libraries, such as lists.

2.2 A monad with checking behaviour

A CamilaMonad is defined as a monad with additional operations that support
condition and invariant checking.

class Monad m => CamilaMonad m where
-- | Check precondition
pre :: Bool -> m ()
-- | Check postcondition
post :: Bool -> m ()
-- | Check invariant before returning data in monad
returnInv :: CData a => a -> m a

The pre and post members take a boolean value as argument, and return a
monadic computation. Depending on the chosen monad instance, this computa-
tion may or may not check the given condition, and may take different kinds of
action when a condition violation is detected. The returnInv member stores a
given value of a constrained datatype in the monad, and may check its constraint
while doing so.

The CamilaT monad transformer adds checking effects to a given base monad.
Which effects exactly depends on the phantom mode argument.

data CamilaT mode m a = CamilaT {runCamilaT :: m a} deriving Show
instance Monad m => Monad (CamilaT mode m) where
return a = CamilaT $ return a
ma >>= f = CamilaT (runCamilaT ma >>= runCamilaT . f)

Camila Revival: VDM meets Haskell 5

The monad transformer is parameterized with a phantom mode argument to
control the behaviour at constraint violation.

Using the type classes specified above, we can now implement functions with
pre- and post-conditions, e.g. the top function of our stack example of Figure 1.

top :: CamilaMonad m => Stack -> m Int
top s = do
pre (not $ empty s)
let result = head $ theStack s
post (((result:(tail $ theStack s)) == theStack s) && (odd result))
return result

The top function in Haskell is monadic, which is indicated by the result type m
Int. The monad m is a parameter, which is constraint to be at least a CamilaMonad
m to guarantee availability of the pre and post functions. These functions are
actually invoked at the beginning and the end of the function, taking predicates
on the input argument s and the output value result as arguments. Note that
no post-condition was present in the VDM specification of Figure 1; we added
it here just to demonstrate the use of post.

3 Modes of evaluation

Various different choices are possible for the phantom mode argument. We will
implement the following modes:

free fall In the free fall mode, no checking is performed whatsoever. When
violations of invariants or conditions occur, they will go undetected, which
may lead to inconsistent results, or run-time failures at later stages of the
computation.

warn In warn mode, invariants and conditions are checked. When found vi-
olated, a warning will be issued, but computation proceeds as if nothing
happened. This may again lead to inconsistent result or run-time failures at
later stages, but at least some diagnostic information will be emitted.

fail In fail mode, invariant and conditions are checked, and when found violated
a run-time error is forced immediately.

error In error mode, invariants and conditions are checked, and when found
violated an error or exception will be thrown.

Below, we will explain how each of these modes can be implemented with ap-
propriate instances of the CamilaMonad class. This explanation is only for those
readers who are well-versed in Haskell, and want to know what goes on ‘under
the hood’. Others may skip the remainder of this section.

3.1 Free fall

To select free fall mode, we will use the following type:

6 Joost Visser et al.

data FreeFall

This type has no constructors, which is fine, because we will only use it in
phantom position, i.e. to instantiate data type parameters that do not occur on
the right-hand side.

The free fall mode can be used in combination with any monad, because it
doesn not require any specific behaviour for checking or reporting. So, we define
the following instance of the CamilaMonad:

instance Monad m => CamilaMonad (CamilaT FreeFall m) where
pre p = return ()
post p = return ()
returnInv a = return a

Here, the pre- and post-condition members simply ignore their boolean argu-
ment, and the invariant-aware return simply does not check the invariant. Thus,
when using this instance of the Camila monad, no checking or reporting occurs.

A convenience function can be defined to enforce free fall mode without
explicitly providing types:

freeFall :: CamilaT FreeFall m a -> CamilaT FreeFall m a
freeFall = id

Thus, when the freeFall combinator is applied to a monadic function, it will
be coerced to use the Camila monad with free fall mode.

3.2 Warn

In warn mode, we want to perform checks and, on violation, emit warnings but
keep running as if all is well. We define the following datatype constructor:

data Warn

To enable reporting, we need a monad with writing capabilities. This can be the
IO monad, for instance:

instance MonadIO m => CamilaMonad (CamilaT Warn m) where
pre p = unless p $ liftIO $ putErr "Pre-condition violation"
post p = unless p $ liftIO $ putErr "Post-condition violation"
returnInv a = do
unless (inv a) $ liftIO $ putErr "Invariant violation"
return a

instance MonadIO m => MonadIO (CamilaT mode m) where
liftIO = CamilaT . liftIO

The unless combinator runs its monadic argument conditionally on its boolean
argument. Thus, when a violation occurs, a warning string is emitted on standard
error.

Instead of the IO monad (a sin bin with many capabilities beyond writing),
we can take a more pure approach where a simple writer monad is used:

Camila Revival: VDM meets Haskell 7

instance CamilaMonad (CamilaT Warn (Writer [CamilaViolation])) where

pre p = if p then return () else tell [PreConditionViolation]

post p = if p then return () else tell [PostConditionViolation]

returnInv a = if (inv a) then return a else do

tell [InvariantViolation]

return a

And likewise for the writer monad transformer:

instance Monad m

=> CamilaMonad (CamilaT Warn (WriterT [CamilaViolation] m)) where

pre p = if p then return () else tell [PreConditionViolation]

post p = if p then return () else tell [PostConditionViolation]

returnInv a = if (inv a) then return a else do

tell [InvariantViolation]

return a

And we can lift writing capabilities to the level of the camila monad:

instance MonadWriter w m => MonadWriter w (CamilaT mode m) where
tell w = CamilaT $ tell w
listen ma = CamilaT $ listen $ runCamilaT ma
pass maf = CamilaT $ pass $ runCamilaT maf

To enforce warn mode without need to write explicit types, we define a conve-
nience function again:

warn :: CamilaT Warn m a -> CamilaT Warn m a
warn = id

3.3 Fail

In fail mode, we want to perform checks, as in warn mode, but when violations
are detected we want to force an immediate fatal error, rather than emit a
warning. We define the following datatype to select fail mode:

data Fail

Fail mode can work with any monad, since no writing capabilities are needed.

instance Monad m => CamilaMonad (CamilaT Fail m) where
pre p = if p then return () else fail "Pre-condition violation"
post p = if p then return () else fail "Post-condition violation"
returnInv a = if (inv a) then return a

else fail "Invariant violation"

Thus, when violations are detected, the standard fail function is used to force
an immediate fatal error.

The following convenience function enforces fail mode (called fatal, since
fail is already taken):

fatal :: CamilaT Fail m a -> CamilaT Fail m a
fatal = id

8 Joost Visser et al.

3.4 Error

In error mode, when a violation is detected, we want to signal an non-fatal error,
i.e. an error that allows recovery. Haskell offers a type class Error that has as
instances all types used as error types, among which:

instance Error IOError
instance Error CamilaViolation

Instead of defining a dedicated type constructor to select error mode, we will use
these error types themselves to select error mode, using that specific error type.

We can define camila monads that operate with error mode on the basis of
any monad with error capabilities. The IO monad is an example:

instance MonadError IOError m => CamilaMonad (CamilaT IOError m) where

pre p = if p then return ()

else throwError $ userError "Pre-condition violation"

post p = if p then return ()

else throwError $ userError "Post-condition violation"

returnInv a

= if (inv a) then return a

else throwError $ userError "Invariant violation"

The userError function raises an IOError which can be caught higher in the
call chain.

If we use our designated CamilaViolation as error type, the following in-
stance can be defined:

instance MonadError CamilaViolation m

=> CamilaMonad (CamilaT CamilaViolation m) where

pre p = if p then return () else throwError PreConditionViolation

post p = if p then return () else throwError PostConditionViolation

returnInv a

= if (inv a) then return a else throwError InvariantViolation

instance MonadError e m => MonadError e (CamilaT e m) where

throwError e = CamilaT $ throwError e

catchError ma f = CamilaT $ catchError (runCamilaT ma) (runCamilaT . f)

Thus, an error of type CamilaViolation is raised with throwError, whenever
a violation is detected.

To enforce error mode with specific error types, the following convenience
functions can be used:

errorMode :: MonadError e m => CamilaT e m a -> CamilaT e m a
errorMode = id

camilaViolation :: MonadError CamilaViolation m
=> CamilaT CamilaViolation m a -> CamilaT CamilaViolation m a

camilaViolation = id

Camila Revival: VDM meets Haskell 9

newtype Stack = Stack { theStack :: [Int] }

instance CData Stack where

inv s = all odd (theStack s)

empty :: Stack -> Bool

empty s = theStack s == []

push :: CamilaMonad m => Int -> Stack -> m Stack

push n s = do

pre (odd n)

returnInv $ Stack (n: theStack s)

pop :: CamilaMonad m => Stack -> m Stack

pop s = do

pre (not $ empty s)

returnInv $ Stack $ tail $ theStack s

top :: CamilaMonad m => Stack -> m Int

top s = do

pre (not $ empty s)

let result = head $ theStack s

return result

Fig. 2. Example in Haskell.

4 Example

Here we pick up the example of stacks of odd numbers from the introduction.
Figure 2 shows the full Haskell code into which that example specification can
be translated. The type definition of Stack and the monadic function definition
of top were discussed above.

The predicate empty to test for emptyness does not need to be monadic,
because it does not need to check invariants or conditions. The push and pop
functions are monadic for two reasons. They have a pre-condition, and they need
to check the invariant of the returned stack.

4.1 Taking top of an empty stack

For purposes of demonstration, we define two programs, each involving a different
violation. In the first example, we take the top of an empty stack. This is illegal,
and if it goes unchecked, it can only lead to a fatal error.

testTopEmptyStack :: CamilaMonad m => m Int
testTopEmptyStack = do
s <- initStack -- create empty stack
n <- top s
return n

10 Joost Visser et al.

We can run this example in the four different evaluation modes defined above,
as follows:

> runCamilaT $ freeFall testTopEmptyStack
*** Exception: Prelude.head: empty list

> runCamilaT $ warn testTopEmptyStack
Pre-condition violation
*** Exception: Prelude.head: empty list

> runCamilaT $ fatal testTopEmptyStack
*** Exception: Pre-condition violation

> runCamilaT $ errorMode testTopEmptyStack
*** Exception: user error Pre-condition violation

In free fall mode, a run-time exception occurs without any warning. As the
message of the exception indicates, the cause is application of the standard
prelude function head to an empty list. In warn mode, the same exception occurs,
but a warning is issued before, when the pre-condition violation is detected.
In fail mode, a run-time exception occurs at the moment of detection, as the
message indicates, before even attempting application of the head function to
an empty list. Finally, in error mode, an exception is raised at the same moment,
but the text user error in the message indicates that this exception is actually
catchable, and not necessarily fatal.

This difference between fail mode and error mode becomes clear when we try
to catch the generated exceptions:

> (runCamilaT $ fatal testTopEmptyStack)
‘catchError‘ _ -> putStrLn "CAUGHT" >> return 42

*** Exception: Pre-condition violation

> (runCamilaT $ errorMode testTopEmptyStack)
‘catchError‘ _ -> putStrLn "CAUGHT" >> return 42

CAUGHT

Thus, the exceptions that occur in error mode can be caught, higher in the call
chain, while in fail mode the exception always gets propagated to the top level.

4.2 Pushing an even number onto the stack

A different situation occurs when we try to push an even number onto the stack,
as follows:

testPushEvenOnStack :: CamilaMonad m => m Int
testPushEvenOnStack = do
s <- initStack
s <- push 0 s

Camila Revival: VDM meets Haskell 11

n <- top s
return n

This test function violates the datatype invariant that requires the stack to
hold odd numbers only. But, without checking, this violation will not lead to an
immediate error, but might go unnoticed until much later.

We can run this second test function in our four different evaluation modes,
as follows:

> runCamilaT $ freeFall testPushEvenOnStack

> runCamilaT $ warn testPushEvenOnStack
PreConditionViolation
InvariantViolation
PostConditionViolation

> runCamilaT $ fatal testPushEvenOnStack
*** Exception: PreConditionViolation

> runCamilaT $ errorMode testPushEvenOnStack
*** Exception: user error (PreConditionViolation)

In free fall mode, no exceptions occur. The violation of the data type invariant
simply goes unnoticed. In warn mode, three subsequent warnings are issued,
corresponding to the various checking moments in the push and top functions
(the latter with the post condition inserted, see Section 2.2, for demonstration
purposes). Again, no exception occurs. In fail and error mode, the behaviour is
as in the case of testTopEmptyStack.

5 Related work

VDM conversion into Gofer. A strategy for automatically translating VDM-SL
specifications into Gofer (a precursor of the Haskell language) and a tool that
performs such translations are presented in [19]. The use of monads in this trans-
lation is limited to state and error monads for modeling VDM state variables and
exceptions. Neither datatype invariants nor pre-conditions on explicit functions
are translated. Pre- and post-conditions on implicit functions are translated into
boolean predicates, rather than monadic functions, and are not invoked during
evaluation.

VDM conversion into Lazy ML. Reference [7] describes a method for converting
model-based specifications (an executable subset of VDM) into Lazy ML. Mon-
ads are not used. Type invariants are translated to functions which are invoked
at input parameter passing time (rather than at value return time). Operations
are modeled by functions whose functionality is augmented with state (both at
input and output level).

12 Joost Visser et al.

Irish VDM. Reference [8] describes Haskell libraries, including QuickCheck
support, which implement the operators of Irish VDM3. Sets are modeled by
strictly ordered lists and finite maps are lists of pairs whose first projections
are strictly ordered. Particular attention is paid to the proof obligations associ-
ated with each operator implementation. Finite relations are modeled by their
powerset transposes, later to be specialized into directed irreflexive multigraphs.

Programatica. This is a system for the development of high-confidence soft-
ware systems and executable systems specification4 which encourages users to
state and validate properties of software as an integral part of the program-
ming process. Assertions are type-checked to ensure a base level of consistency
with executable portions of the program and annotated with “certificates” that
provide evidence of validity. Different forms of certificate are supported, offer-
ing a wide range of validation options — from low-cost instrumentation and
automated testing, to machine-assisted proof and formal methods. A suite of
“property management” tools provides users with facilities to browse or report
on the status of properties and associated certificates within a program, and to
explore different validation strategies. Programatica finds its inspiration in
type theory rather than set theory-based methods like VDM.

Jakarta Commons Logging (JCL). The Jakarta project of the Apache Software
Foundation offers logging support in the form of a LogFactory class that creates
concrete implementations of a Log interface5. The interface offers methods like
fatal, error, and warn to emit messages to consoles and/or log files. To decide
which concrete implementation to create, a layered discovery process is applied,
involving inspection of configuration attributes and reflective techniques, such as
class loading and resource discovery. Thus, switching between logging behaviours
can be accomplished e.g. by moving jar files on or off the class path. Similar
with the reporting in our monadic Haskell model of VDM property checking, the
cross-cutting logging behaviour is altered without changing code, but by selection
of different concrete types that implement the same interface. In contrast with
our approach, JCL accomplishes the switching dynamically, and outside the
semantics of the Java language.

VDMTools Existing VDM environments, such as IFAD’s VDMTools [10, 11],
offer the possibility of enabling different debugging and dynamic checking fea-
tures during interpretation of VDM specifications. Checking of invariants, of
pre-conditions, and of post-conditions can be turned on and off individually.
Our monadic model can be seen as the (executable) specification of such an
interpreter, though we offer variability in the checking behaviour (four different
modes), for all three types of check simultaneously.

3 http://www.cs.tcd.ie/Andrew.Butterfield/IrishVDM
4 http://www.cse.ogi.edu/PacSoft/projects/programatica.
5 http://jakarta.apache.org/commons/logging/

Camila Revival: VDM meets Haskell 13

6 Concluding remarks

We have shown a novel way of modeling VDM-SL functions, possibly involving
pre- and post-conditions and constrained datatypes, as monadic Haskell func-
tions. We defined an extended monad interface (CamilaMonad) that can be in-
stantiated in different ways to enable different modes of evaluation. Each mode
offers different behaviour regarding property checking and violation reporting.
Switching between modes is controlled by a single phantom type argument, which
may be supplied via convenience wrapper-functions.

We envision several usage scenarios in which different evaluation modes and
the ability to switch between them are useful. The free fall mode is useful after
a fully tested and verified system is taken into operation. For such as system,
correct operation is guaranteed, and all checking and reporting can be turned off.
When a system is taken into operation without full verification, the fail mode
may be useful to kill the system as soon as a condition is violated, rather than
letting it run and risk dispersion of inconsistencies throughout the system. The
warn mode can be useful when assessing the robustness of a system through fault
injection [9]. A trace will be emitted of all violations that occur as a consequence
of an injected fault, showing which parts of the system are vulnerable. Finally,
during unit and functional testing, it is most appropriate to evaluate in error
mode, which forces early exceptions that are catchable by a testing environment
and provide information about the origin of test failures.

With our approach, all these scenarios can peacefully coexist, because the
system does not need to be changed to evaluate it in a different mode. In addition,
the switching is accomplished within the semantics of the source language, rather
than through instrumentation of compiler-generated code.

6.1 Relevance to Overture

Both the Overture and the Camila Revival projects aim to create tool support
for VDM dialects. Overture is Java based, and aspires to be an industry-strength
development environment. We have chosen Haskell as base language, and our
primary goal is to create a platform for experimentation with research ideas.
We hope the outcome of such experiments may lead to inspiration for future
developments in projects such as Overture.

For instance, we believe that our approach to grammar engineering and
grammar-centered language tool development [5] deserves wider adoption. The
relational data model calculator VooDooM [4], as well as the reverse engineering
of VDM data models from relational ones [21], demonstrate how advanced model
transformation and generation techniques can augment the standard language
tools support, such as editing and compilation.

The monadic model for VDM property checking presented in the current pa-
per has relevance for VDM compiler/interpreter construction efforts. It provides
an answer to how property checking may be understood semantically. When
constructing a compiler or interpreter, such semantics need to be implemented.
When compiling to Java, for instance, our monadic model so far suggests to

14 Joost Visser et al.

consider using class parameters to switch between evaluation modes, possibly
using a model of monads in Java.

6.2 Future work

Many future challenges exist, both regarding our monadic model of VDM and
more generally in the Camila Revival project as a whole.

The messages generated upon detection of violations presently do not iden-
tify which property exactly is concerned. The various member functions of the
CamilaMonad can be easily extended to provide room for line numbers or specific
messages. In [20] a method for specifying gradually more specific error messages
is proposed in the context of a monadic treatment of relational data models.
Apart from the four modes and their implementations discussed here, further
modes may be explored, for instance supporting a richer error type. In [16],
we have already experimented with monadic support of VDM’s notion of state
and we intend to enrich the improved monadic model present here with such
functionality.

Other ongoing work in the Camila Revival project, apart from the monadic
model, includes the development of static analysis tools for VDM, and conversion
tools to, from, and within VDM, of which VooDooM is a first instance [4]. Fur-
ther, we are developing a component model [18] to capture component behaviour
and interaction.

References

1. J.J. Almeida, L.S. Barbosa, F.L. Neves, and J.N. Oliveira. Bringing camila and sets
together — the bams.cam and ppd.cam camila Toolset demos. Technical report,
DI/UM, Braga, December 1997. [45 p. doc.].

2. J.J. Almeida, L.S. Barbosa, F.L. Neves, and J.N. Oliveira. Camila: Formal soft-
ware engineering supported by functional programming. In A. De Giusti, J. Diaz,
and P. Pesado, editors, Proc. II Conf. Latino Americana de Programacin Fun-
cional (CLaPF97), pages 1343–1358, La Plata, Argentina, October 1997. Cente-
nario UNLP.

3. J.J. Almeida, L.S. Barbosa, F.L. Neves, and J.N. Oliveira. Camila: Prototyping
and refinement of constructive specifications. In M. Johnson, editor, 6th Int. Conf.
Algebraic Methods and Software Technology (AMAST), number 1349 in Lecture
Notes in Computer Science, pages 554–559. Springer-Verlag, December 1997. 6th
International Conference, AMAST’97, Sydney, Australia, 13–17 December 1997,
Proceedings.

4. T. Alves, P. Silva, J. Visser, and J.N. Oliveira. Strategic term rewriting and its
application to a VDM-SL to SQL conversion. In Proceedings of the Formal Methods
Symposium (FM’05). Springer, 2005. To appear.

5. T. Alves and J. Visser. Development of an industrial strength grammar for VDM.
Technical Report DI-PURe-05.04.29, Universidade do Minho, April 2005.

6. D. Betz. Xlisp: An experimental object oriented language. Technical report,
Manchester, 1985.

Camila Revival: VDM meets Haskell 15

7. P. Borba and S. Meira. From VDM specifications to functional prototypes. Journal
of Systems and Software, 3(21):267–278, June 1993.

8. A. Butterfield. Haskell library for Irish VDM. Technical report, Dept. of Computer
Science, Trinity College, Dublin University., April 2005.

9. J. Carreira, H. Madeira, and J. G. Silva. Xception: Software fault injection and
monitoring in processor functional units. IEEE Transactions on Software En-
geenering, 24(2), February 1998.

10. R. Elmstrom, P.G. Larsen, and P.B. Lassen. The IFAD VDM-SL toolbox: a prac-
tical approach to formal specifications. SIGPLAN Notices, 29(9):77–80, 1994.

11. J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques
for Software Development . Cambridge University Press, 1st edition, 1998.

12. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs for Object–oriented Systems. Springer, New York, 2005.

13. P. Henderson. Me Too: A language for software specification and model-building
— preliminary report. Technical report, Univ. Stirling, Dec. 1984.

14. C.B. Jones. Software Development — A Rigorous Approach. Series in Computer
Science. Prentice-Hall International, 1980. C.A. R. Hoare.

15. S.L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, Cambridge, UK, 2003. Also published as a Special Issue of the Journal of
Functional Programming, 13(1) Jan. 2003.

16. A. Mendes and J.F. Ferreira. PUReCAMILA: A System for Software Development
using Formal Methods. Technical report, U. Minho, Feb. 2005.

17. A. Mendes, J.F. Ferreira, and J.M. Proença. CAMILA Prelude. Technical report,
U. Minho, Sep. 2004. In Portuguese.

18. S. Meng and L.S. Barbosa. On refinement of generic state-based software com-
ponents. In C. Rettray, S. Maharaj, and C. Shankland, editors, 10th Int. Conf.
Algebraic Methods and Software Technology (AMAST), pages 506–520, Stirling,
August 2004. Springer Lect. Notes Comp. Sci. (3116). Best Student Co-authored
Paper Award.

19. P. Mukherjee. Automatic translation of VDM-SL specifications into Gofer. In J.S.
Fitzgerald, C.B. Jones, and P. Lucas, editors, FME, volume 1313 of Lecture Notes
in Computer Science, pages 258–277. Springer, 1997.

20. C. Necco. Polytypic data processing. Master’s thesis, Facultad de C. F́ısico
Matemáticas y Naturales, University of San Luis, Argentina, 2005.

21. F.L. Neves, J.C. Silva, and J.N. Oliveira. Converting informal meta-data to VDM-
SL: A reverse calculation approach. In VDM in Practice! A Workshop co-located
with FM’99: The World Congress on Formal Methods, Toulouse, France, Septem-
ber 1999.

22. J.N. Oliveira. A Reification Calculus for Model-Oriented Software Specification .
Formal Aspects of Computing, 2(1):1–23, April 1990.

23. J.N. Oliveira. Software Reification using the SETS Calculus . In Tim Denvir,
Cliff B. Jones, and Roger C. Shaw, editors, Proc. of the BCS FACS 5th Refinement
Workshop, Theory and Practice of Formal Software Development, London, UK,
pages 140–171. ISBN 0387197524, Springer-Verlag, 8–10 January 1992. (Invited
paper).

