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Abstract – This paper describes a study conducted at the 
University of Nottingham, whose goal was to assess 
whether the students registered on the first-year module 
“Mathematics for Computer Scientists” appreciate the 
calculational method. The study consisted of two parts: 
“Proof Reading” and “Problem Solving”. The goal of 
“Proof Reading” was to determine what the students 
think of calculational proofs, compared with more 
conventional ones, and which are easier to verify; we also 
assessed how their opinions changed during the term. 
The purpose of “Problem Solving” was to determine if 
the methods taught have influenced the students' 
problem-solving skills. Frequent criticisms of our 
approach are that we are too formal and that the 
emphasis on syntactic manipulation hinders students’ 
understanding. Nevertheless, the results show that most 
students prefer or understand better the calculational 
proofs. On the other hand, regarding the problem-
solving questions, we observed that, in general, the 
students maintained their original solutions. 
 
Index Terms – Calculational Method, Computer Science 
Education, Problem Solving, Teaching Mathematics. 

I. INTRODUCTION  

Reasoning rigorously and effectively in mathematics is 
essential for studies in computing and engineering. 
However, most students are not adequately skilled in formal 
reasoning and proof. As a result, they have difficulties in 
employing mathematics to solve new problems. We believe 
that the state of affairs can be improved by using the 
calculational method [1], where most proofs are reduced to 
elementary syntactic manipulation. 

Calculational proofs are usually written using a uniform 
format, where each step is accompanied by a hint justifying 
the validity of the step. For example, we write 

     A 
=      { p }  
     B 
=      { q }  
     C 

to prove that A=C. A, B and C are expressions, and p and q 
are hints why A=B and B=C, respectively. Some relevant 
advantages of this format are that the hints reduce the search 
space, there are no repeated intermediate expressions, and 
we can immediately conclude that A=C, just by looking at 
the first and last expressions and at the relations connecting 

them. Another important aspect of this format is that it 
forces the writer to provide explanation for each step. 

Although calculational proofs are widely used by 
computer scientists, and some of them even use them to 
teach mathematics [2] [3], there is little information on what 
students think of them, especially when compared with 
traditional proofs. 

In this paper, we describe a study conducted at the 
University of Nottingham, whose goal was to assess whether 
the students registered on the first-year module 
“Mathematics for Computer Scientists” appreciate 
calculational proofs. 

The only related studies that we are aware of were 
recently done in Turku, Finland, and show that a 
calculational approach can be beneficially used in high-
school and university [4]. Although our experiment is done 
on a much smaller scale, we believe that it complements 
their studies by asking the students to compare traditional 
and calculational proofs and by studying how their opinions 
change during the term. 

The details of the study and the results are discussed in 
Section II. Frequent criticisms of our approach are that we 
are too formal and that the emphasis on syntactic 
manipulation hinders students’ understanding. Nevertheless, 
the results show that most students prefer or understand 
better the calculational proofs. For instance, we were 
surprised to observe that, in the first coursework, when the 
students had no prior knowledge of the calculational method 
and notations, more than two thirds of them preferred the 
calculational proof to its traditional counterpart. On the other 
hand, regarding the problem-solving questions, we observed 
that, in general, the students maintained their original 
solutions. In the conclusion, we elaborate on these results 
and we discuss some future work. 

II. DESCRIPTION OF THE STUDY AND RESULTS 

The study was conducted at the University of Nottingham 
with the students registered on the first-year module 
“Mathematics for Computer Scientists” (G51MCS) in the 
academic year 2008/2009.  

The module is targeted at undergraduate students in the 
School of Computer Science and in the School of 
Mathematics, and it covers basic concepts in mathematics of 
relevance to the development of computer software (Boolean 
algebra, simple number theory, sets, functions and relations, 
quantifiers, and simple induction on natural numbers). 
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There were a total of 135 students registered on the 

module. They had two lectures per week, associated 
coursework and weekly tutorials. Their feedback was 
collected through supplementary questions included in seven 
of the nine courseworks released. The participation was on a 
voluntary basis, but the students would have extra marks if 
they expressed their opinions. 

The study consisted of two parts: “Proof Reading” and 
“Problem Solving”. In “Proof Reading”, we have shown 
calculational and traditional proofs for the same theorem and 
we have asked the students which one they preferred. We 
repeated the same questions later in the term to measure how 
their opinions changed. In “Problem Solving”, we have 
asked them to solve the same problems at the beginning and 
later in the term, so that we could compare the solutions and 
determine if our methods have influenced them. 

A. Part 1 - Proof Reading 

1) Research Questions: The goal of the “Proof Reading” 
part was to determine what the students think of 
calculational proofs, compared with more traditional (and 
informal) ones. In particular, we have addressed the 
following research questions: 
• How do students react when confronted for the first 

time with calculational proofs and with its proof format? 
• Which type of proofs do the students prefer or 

understand better?  
• How did students’ opinions change during the term? 
• Which type of proofs is easier to verify and in which 

one is it easier to detect mistakes? 
2) Study Description: In total, we have shown the 

students three different propositions, each with two different 
proofs: a calculational and a more conventional one. The 
question was the same for the three propositions: 

For the following theorem, we show you two different 
proofs. Read both of them carefully and say which one 
you prefer or understand better. Justify your answer. If 
there is any step that you don’t understand, please mention 
that in your answer. You are encouraged to suggest 
comments and improvements to the proofs presented. 

The theorem and proofs given in coursework 1 are shown in 
Figure 1. We have repeated the same question in coursework 
6. Proof 0 was taken from a chapter on mathematical proofs 
of a secondary school book [5]. Proof 1 is essentially the 
same proof, but rewritten in the calculational format 
described in the introduction. Note that the calculational 
format forces the writer to provide explanations for all the 
steps; that is why Proof 1 has more hints. 

In coursework 2, we have shown the proofs for the 
irrationality of 2  depicted in Figure 2. Proof 0 was taken 
from [3] and we believe it is a much more goal-oriented and 
motivated proof than the conventional proof by 
contradiction. We did not repeat the same question; instead, 
for coursework 4, we changed it and we gave the false 
proposition that 4  is not a rational number, together with 
the same proofs used in coursework 2, but with all the 

relevant occurrences of 2 replaced by 4 (the calculational 
proof uses the wrong assumption that exp.4=1; the 
conventional one wrongly assumes that q is even). The goal 
of this “trick question” was to assess which type of proof is 
easier to verify. 
 

 
FIGURE 1 

THEOREM AND PROOFS GIVEN IN COURSEWORKS 1 AND 6 
 

3) Sample: In total, 115 students answered the questions 
of courseworks 1 or 6: 28 students answered only 
coursework 1, 18 only coursework 6, and 69 both. So, there 
were 97 students answering the question in coursework 1 
and 87 answering the question in coursework 6. 

Regarding the other two courseworks, 123 students 
answered the question of coursework 2 and 100 answered 
the question of coursework 4. 

4) Results: 
  a) How do students react when confronted for the first 

time with calculational proofs and with its proof format?: 
We have categorized the answers to coursework 1 as 
depicted in Figure 3. Surprisingly, most students (67, 69%) 
preferred or understood better the calculational proof (e.g. “I 
prefer proof 1, because it clearly highlights what has been 
used, which is not as obvious in proof 0.”). Twenty-six 
students (27%) preferred the conventional proof (e.g. “I 
prefer Proof 0, because it keeps explanation to a minimum 
and it is easier to understand the steps.”). Four students (4%) 
did not understand the proof or did not express their 
preference (e.g. “I don’t understand binomial expansion. I do 
not like or understand either proof.”). 

Frequent reasons for preferring the calculational proof 
included expressions as “more detailed”, “steps more 
explained”, “more understandable format”, and “easier to 
understand”. Regarding the conventional proof, the reasons 
included “easier to understand”, “clearer” and “short”. 
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FIGURE 2 

THEOREM AND PROOFS GIVEN IN COURSEWORK 2 
 
Clearly, the results show that the students had no 

problems with the calculational format. Although they have 
never used or seen it before, most of them preferred it to the 
conventional style. The main reason for their preference was 
the use of hints explaining the relation between the steps. 

b) Which type of proofs do the students prefer or 
understand better?: According to the results obtained in 
coursework 1, we would expect the students to prefer the 
calculational proof shown in coursework 2. However, 77 
students (63%) preferred the proof by contradiction (e.g. 
“(...) The reason I prefer Proof 1 is because although it is 
quite short it gets straight to the point. Proof 0 drags on and 
begins to talk about exponential functions, which to be 
honest, confuses me. (...)”). 

 
FIGURE 3 

STUDENTS’ INITIAL PREFERENCES (COURSEWORK 1) 
 
Forty students (32%) preferred the calculational 

alternative (e.g. “I understand Proof 0 more than Proof 1. 
This is because proof 1 is too short and doesn’t explain fully 
each step like proof 0 does. Even though Proof 0 brings in 
other functions, it explains why they are being used and the 
properties that the function has. (...) Overall even though 
Proof 0 is longer it is easier to understand and doesn’t make 
any assumptions.”). Six students (5%) did not express any 
preference (e.g. “I totally understood Proof 0, due to the use 
of extended English in order to explain the steps being taken. 
I also understand Proof 1.”). Figure 4 depicts these results. 

 
FIGURE 4 

STUDENTS’ INITIAL PREFERENCES (COURSEWORK 2) 
 
The difference between the results of coursework 1 and 

coursework 2 show that the preferences of the students 
depend on the proof being considered. The major problem 
with the calculational proof was the use of the exp function, 
which confused the students. We also believe that the 
implication step (second step) may have caused difficulties. 

In section II.A.4.d, we discuss some results that may 
indicate that a significant number of the students who 
preferred the proof by contradiction may not have 
understood it properly. 

c) How did students’ opinions change during the term?: 
To answer this question, we have analysed the answers of 
the students who have answered both courseworks 1 and 6. 
We have classified the answers as depicted in Figure 5. 

 
FIGURE 5 

EVOLUTION OF STUDENTS’ PREFERENCES 
 
Out of the 69 students that answered both courseworks, 

46 (67%) maintained the calculational proof as their 
favourite, and 5 (7%) changed their preference from the 
calculational to the conventional proof. Some of the answers 
of these students who changed opinion are confusing and 
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contradictory; for example, one student wrote in coursework 
1 that “In proof 0, I don’t understand after (1+h). I 
understand proof 1.”, but in coursework 6 the same student 
wrote “I prefer proof 0 because it is clearer. Proof 1 is 
complicated, I don’t understand from the second step. It is 
confusing.”. 

Five students (7%) kept the conventional proof as their 
favourite, and 11 (16%) changed their preference from the 
conventional to the calculational version. Most of these 
students who changed opinion justify the change with proof 
1 having hints between the steps. For example, one student 
wrote in the first coursework “I prefer Proof 0 because it is 
brief and concise”, and he used conciseness as a reason to 
choose proof 1 in coursework 6: “Proof 0 is more concise 
than Proof 1. Proof 1 contains many explanations unlike 
Proof 0 that contains none. I prefer Proof 1 better because in 
the event that an error occurred, the error could be easily 
seen and corrected. Also by making the calculations explicit 
another person can easily read and understand the solution of 
a problem.”. 

There were 2 students (3%) who did not express any 
preference at all. 

We see that from the 51 students that initially preferred 
the calculational version, 5 (10%) changed opinion; this is a 
relative small number of students, when compared with the 
11 (69%) out of the 16 students that changed their 
preference from the conventional to the calculational proof. 

However, considering the results obtained in 
coursework 2, we know that their preferences depend on the 
examples. We address again this issue in the conclusion. 

d) Which type of proofs is easier to verify and in which 
one is it easier to detect mistakes?: Recall that, to answer 
this question, we have included a false proposition in 
coursework 4, together with two incorrect proofs. 
Surprisingly, 74 (74%) students did not detect any mistake; 
moreover, 44 (59%) of these 74 preferred the conventional 
proof, and 30 (41%) the calculational one. 

Figure 6 illustrates how the 26 (26%) students that 
detected the mistake are divided. 

 
FIGURE 6 

PROOFS WHERE THE STUDENTS DETECTED THE ERROR 
 
The details are given below: 

• 9 (34%) preferred the calculational proof; 8 of them 
detected the mistake only in the calculational version 
(e.g. “I prefer the set up of Proof 0, however I don’t 
understand one step (that exp.4 = 1). Although I do 
understand proof 1, I would not personally work it out 
that way.”); one student detected the mistake in both. 

• 8 (31%) preferred the traditional proof, but all of them 
detected the mistake only in the calculational proof (e.g. 

“Proof 1 is by far the easier to understand, looking at 
Proof 0 I can’t even see that the answer is correct as 
exp.4 + exp. does/can not equal 1 + 2×exp.q?”). 2q

• all the others did not express any preference: 
- 2 (8%) detected the error in both proofs; 
- 2 (8%) detected the error in the calculational proof; 
- 2 (8%) detected the error in the traditional proof; 
- 3 (12%) realized that the proposition was false and 

did not comment on the proofs (e.g. “Theorem is 
incorrect. Because =4, so 22 4  must be a rational 
number.”). 

Note that there were no students detecting the error in 
the conventional proof and choosing it as their favourite. 
Moreover, only 2 (8%) students detected the error in the 
traditional proof, against 18 (69%) who detected it in the 
calculational one. These results strongly suggest that the 
calculational format is better to verify proofs and to detect 
mistakes. The reason is clear: since all the steps are justified 
and are easily identified, the reader can easily check each 
step individually. 

We now show two excerpts of the answers of two 
different students showing that the informal style of the 
proof by contradiction obfuscates the error. The first student 
prefers the proof by contradiction (failing to see that it is 
wrong), because the calculational proof has an error: 

“I think there is a mistake in it [Proof 0] when: ‘Let exp.k 
be the number of times that 2 divides k. (e.g. exp.8 = 3)’ 
it is then applied to the left hand side exp.4+exp.  to 
give 1+2×exp.q but 2 goes into 4, 2 times not one. It 
should be ‘let exp.k be the number of times 4 divides k’ 
then it would be correct. Given the above I prefer proof 1. 
It’s short, takes logical steps that are well defined.” 

2q

The second student also detects the error in the 
calculational proof, but he writes that the informal proof 
“clearly shows that 4  is not a rational number”: 

“ (...) However I believe that 4  is a rational number 
because from the Proof 0 you can clearly see that: [student 
shows calculation with exp.4 replaced by the correct 
value, 2]  
Although it is very risky to challenge the proofs, I believe 
that Proof 1 is actually correct. Making my life harder, I 
have concluded that Proof 0 actually might show that 4  
is a rational number and Proof 1 clearly shows that 4  is 
not a rational number.” 

These results also suggest that a significant number of 
the students who preferred the proof by contradiction in 
coursework 2 (see section II.A.4.b) may not have understood 
the proof properly.  

B. Part II – Problem Solving 

1) Research Questions: The goal of the “Problem 
Solving” part was to assess how the students’ problem-
solving skills changed during the term. We have addressed 
the following research questions: 
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• How was the students’ ability to solve problems at the 

beginning of the term?  
• Did the students’ ability to solve problems change 

during the term?  
• Did the students adopt what was taught in the module to 

solve the problems? 
2) Study Description: We have asked the students to 

solve three different problems. All the problems were 
prefaced by the following text: 

Please try to solve the following problem, showing all the 
steps that justify your answer. The problem can be solved 
in different ways and it is important for us that you make a 
serious attempt to solve it. Remember that we are just 
assessing your problem-solving skills. 

The problem that we gave in coursework 1 was: 

Is the sum of all the numbers n, where 1982 n≤ ≤ 2008, an 
even or an odd number? 

We have repeated the same problem in coursework 7. We 
included this problem because it can be solved by a simple 
counting argument that follows from a calculational rule that 
we teach. The rule is that the predicate even distributes over 
Boolean equality, i.e.: 

even.(m+n) even.m even.n  . ≡ ≡
(even.n evaluates to true if n is even and it evaluates to false 
if it is odd.) A consequence of this rule is that a sum of 
numbers is even if the number of odd summands is even. 

In coursework 2, we asked the students to solve the 
following logic puzzle: 

The island of knights and knaves is a fictional island that 
has two types of inhabitants: ‘knights’, who always tell the 
truth; ‘knaves’, who always lie. Three of the inhabitants—
A, B, and C—were standing together in the garden. A 
stranger passed by and asked A, “Are you a knight or a 
knave?”. A answered, but rather indistinctly, so the 
stranger couldn’t make out what was said. The stranger 
then asked B, “What did A say?”. B replied, “A said that 
he is a knave”. At this point the third, C, said “Don’t 
believe B; he’s lying!”. The question is, what are B and C? 

We repeated the same problem in coursework 9. We use 
logic puzzles as examples for demonstrating the 
effectiveness of the calculational logic: we replace the 
traditional case analysis by straightforward calculations. We 
included this problem to assess whether the students 
consider the calculational alternative effective. 

The third problem was posed in coursework 5: 

Prove that the product of four consecutive non-zero 
numbers cannot be the square of an integer. Hint: the 
property that there are no two consecutive non-zero 
squares can be useful. 

We did not repeat this problem. We included it to 
determine if, at the middle of the term, the students would 
use the calculational format to record their proofs. 

3) Sample: In total, 117 students tried to solve the 
problems of courseworks 1 or 7: 37 tried only the problem in 
coursework 1, 8 only the one in coursework 7, and 72 tried 
both. So, there were 109 students trying to solve the problem 
in coursework 1 and 80 attempted to solve the one in 
coursework 7. 

The problem of coursework 2 was attempted by 124 
students and from these only 12 attempted the problem again 
in coursework 9. 

Finally, there were 48 students that tried the third 
problem in coursework 5. 

4) Results: 
a) How was the students’ ability to solve problems at the 

beginning of the term?: To answer this question, we have 
analysed the students’ solutions to courseworks 1 and 2. In 
coursework 1, 88 (81%) students gave the right answer: 31 
used a counting argument, 23 used the formula for the 
arithmetic series, 18 added all the numbers, and 19 gave an 
unsatisfactory argument (e.g. “1982 + … + 2008 is an odd 
number”). Also, 18 students (16%) solved it incorrectly (e.g. 
“The sum of numbers will be even because there are more 
even numbers in the given range; the probability of even 
numbers will be higher.”) and 2 (3%) were not able to 
answer (e.g. “I don’t know.”). 

In coursework 2, 87 (69%) students solved the problem 
correctly, 37 (29%) solved it incorrectly, and 2 (2%) did not 
know how to solve it.  

Of the 37 students who solved the problem incorrectly, 
most of them (14, 38%) were not able to determine the value 
of the variables (e.g. “If B is a knave then C is a knight. If C 
is a knave then B is a knight.”); 13 (35%) gave the right 
answer, but a wrong justification (e.g. “B is a knave, C is a 
knight. This is because like the problem states, knights 
always tell the truth. C has not been asked any question, but 
instead C just came out with “Don’t believe B, he’s lying”. 
So therefore C has to be a knight for pointing out the 
truth!”); 6 (16%) gave a wrong answer; and 4 (11%) just 
gave the final answer, with no explanation. 

The results clearly show that, in general, the students 
were able to solve the problems. 

b) Did the students’ ability to solve problems change 
during the term?: To answer this question, we have checked 
how the answers changed from coursework 1 to coursework 
7 and from coursework 2 to coursework 9. 

Although most of the students maintained their initial 
solutions, a significant number of them improved. Out of the 
72 students who answered both courseworks 1 and 7, 45 
(63%) maintained their initial solution, 21 (29%) improved 
their solution, while 6 (8%) had a worse solution in the end 
(Figure 7). 

Of the 12 students who answered both courseworks 2 
and 9, 7 (58%) maintained their initial solution, 3 (25%) 
improved, and 2 (17%) worsened (Figure 8). 

The results suggest that the students’ ability to solve 
problems improved. In the following paragraph, we give 
more details on the improvement. 
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FIGURE 7 

EVOLUTION OF THE STUDENTS’ ANSWERS  (COURSEWORK 1 TO 7) 
 

 
FIGURE 8 

EVOLUTION OF THE STUDENTS’ ANSWERS  (COURSEWORK 2 TO 9) 
 
c) Did the students adopt what was taught in the module 

to solve the problems?: Out of the 21 students who improved 
from coursework 1 to coursework 7, 17 (81%) changed their 
initial solution to a correct counting argument, which 
suggests that they used what was taught during the term. On 
the other hand, in coursework 7, only 4 (6%) students used 
the calculational format for solving the problem. 

Regarding the problem in coursework 5, most of the 
students (33, 69%) gave a wrong answer; only 7 (14%) 
answered it correctly. Eight students (17%) did not know 
how to solve it. Of the 33 that failed to solve the problem, 13 
(39%) used (in one way or another) the calculational format, 
with hints justifying the steps; of the 7 who solved the 
problem, 4 (57%) used the calculational format. 

Finally, in coursework 9, only one student tried to solve 
the problem calculationally and he failed. All the other 
students provided an informal argument, which clearly 
suggests that they did not find our calculational solutions to 
logic puzzles good enough. 

Overall, we can say that they have adopted what was 
taught in the module. However, their use of the calculational 
style was not effective enough. 

III. CONCLUSION 

The results shown above indicate that, in general, the 
students preferred the calculational format. However, 
according to the results of coursework 2, it is not enough to 
provide detailed hints; we also have to explain and motivate 
the techniques that we use. We believe that providing more 
motivation for the introduction of the function exp in 
coursework 2 would have changed the results. 

The results also indicate that the calculational format is 
better for detecting errors in arguments. In particular, the 
results of coursework 4 (and the excerpts shown) suggest 
that informal proofs by contradiction may obfuscate the 
error. In fact, we are led to believe that a significant number 
of students who preferred the proof by contradiction did not 
understand it. 

The relatively large number of students changing their 
preference from the conventional to the calculational proofs 
also shows that, as the students got more familiar with the 
calculational format, they found it better. Indeed, we think 
that the students would be prepared to switch to the 
calculational format if given more practice. 

Regarding the part on problem solving, we see that most 
students had no difficulties solving the first two problems. 
Even so, a significant number of them improved their 
solutions in their second try. Generally, they have adopted 
what was taught in the module for solving problems, but 
their use of the calculational style was not effective. 

In the future, we plan to do further studies at the 
university level and in Portuguese secondary schools. We 
are currently creating packages of teaching scenarios, which 
are fully worked out solutions to problems together with 
detailed guidelines, to use in these future experiments. 
Finally, we are also developing a structure editor of 
handwritten mathematics [6] that supports a calculational 
approach to teaching mathematics. 
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