
Structured Editing of Handwritten

Mathematics

Alexandra Sofia Ferreira Mendes

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

School of Computer Science

May 2012



Abstract

Teaching effectively requires a clear presentation of the material being taught and in-

teraction with the students. Studies have shown that Tablet PCs provide a good tech-

nological support for teaching. The aim of the work presented in this thesis is to design

a structure editor of handwritten mathematics that explores the facilities provided by

Tablet PCs. The editor is made available in the form of a class library that can be used

to extend existing tools.

The central feature of the library is the definition of structure for handwritten mathe-

matical expressions which allows syntactic manipulation of expressions. This makes

it possible to accurately select, copy and apply algebraic rules, while avoiding the in-

troduction of errors. To facilitate structured manipulation, gestures are used to apply

manipulation rules and animations that demonstrate the use of these rules are intro-

duced. Also, some experimental features that can improve the user’s experience and

the usability of the library are presented. Furthermore, it is described how to integrate

the library into existing tools. In particular, Classroom Presenter, a system developed to

create interactive presentations using a Tablet PC, is extended and used to demonstrate

how the library’s features can be used in some teaching scenarios.

Although there are limitations in the current system, tests performed with teachers and

students indicate that it can help to improve the experience of teaching and learning

mathematics, particularly calculational mathematics.

i



Acknowledgements

I would like to thank my supervisor, Professor Roland Backhouse, for all the support

and feedback he gave me throughout my PhD. Thank you for always being available

and for inviting us over to your house to spend wonderful afternoons chatting and

enjoying the garden. I will never forget that. Thanks also to Hilary Backhouse for

being so friendly and for always receiving us so well.

I would also like to thank Dr. José Nuno Oliveira for accepting to be my co-supervisor,

for his support, and for his enthusiasm in the lectures and in the discussion of prob-

lems.

My sincere gratitude also goes to Dr. Luís Soares Barbosa for everything he has done

for me. Thanks to him I have got the opportunity to start a PhD and his constant

support and availability have been very valuable.

My thanks also goes to my examiners, Dr. Colin Higgins and Dr. Richard Verhoeven,

for their feedback on my work.

I would like to express my gratitude to Maplesoft for giving me permission to use one

of their recognisers.

A very special thanks goes to my GP, Doctor Simon Royal, for being the only doctor

able to help me with the health problems that crossed my way during my PhD studies.

He is the best doctor I have ever met.

I would also like to acknowledge the help of Nocas and Professora Marta for all the

advice they gave me and for their friendship.

A very special thanks goes to my parents, Francisco e Rosa Mendes, who worked very

hard all their lives to give to their children the opportunities and care that they never

had. Pai e Mãe, sei que vocês sempre trabalharam muito duro para me darem as opor-

tunidades e os cuidados que vocês nunca tiveram, e eu dou muito valor a isso. Muito

ii



obrigada por tudo!

Finally, I would like to thank the most important person in my life: my beloved hus-

band, João Ferreira. Without his love and support (and feedback) I would have never

finished this work. He is the most loving and caring person that I have ever met.

Thank you João for always being by my side, for always listening, for being there for

me whenever I need, and for being the perfect husband and friend. You make my life

worthwhile and I love you more than I thought possible.

A Fundação para a Ciência e a Tecnologia apoiou o trabalho desenvolvido nesta tese

com a bolsa de investigação SFRH / BD / 29553 / 2006, financiada por fundos na-

cionais do MCTES.

iii



Contents

1 Introduction 2

1.1 Writing mathematics using a computer . . . . . . . . . . . . . . . . . . . 4

1.2 Calculational method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 An example task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Structure and organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 An overview of pen/touch-based technologies and structure editing 15

2.1 Structure editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Pen- and touch-based technologies . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Software for handwritten mathematics . . . . . . . . . . . . . . . . . . . . 20

2.4 Limitations and tendencies of current technologies . . . . . . . . . . . . . 23

3 The functional design 25

3.1 Library versus standalone editor . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Supported notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Typeset versus handwriting . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Handwriting recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Text editing versus structure editing . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Basic editing operations . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



CONTENTS

3.6 Manipulation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Animating manipulation rules . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Use of gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8.1 Gestures to trigger actions . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 System versus user in control . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Combined writing of mathematics and text . . . . . . . . . . . . . . . . . 35

4 The technical design 36

4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Extendability and reusability . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Handling of strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Character recogniser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Bayesian network models . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Parsing recognition results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Data structures for mathematical expressions . . . . . . . . . . . . 50

4.5.2 Creation of structured trees . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Spatial indexing of handwritten expressions . . . . . . . . . . . . . . . . 60

4.7 Structure editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7.1 Selection and copy . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7.2 Manipulation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Animation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Gestures support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Markup and binary outputs for mathematical expressions . . . . . . . . 74

4.11 Experimental features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11.1 Handwritten templates . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11.2 Automatic space adjustment . . . . . . . . . . . . . . . . . . . . . 78

5 Integration into external tools 79

v



CONTENTS

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 How to integrate the library . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Module Recognisers . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Module Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3 Module Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.4 Module Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 An Example: Extending Classroom Presenter . . . . . . . . . . . . . . . . 87

5.3.1 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Evaluation and testing 100

6.1 Software evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Evaluation by Teachers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Evaluation by Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Testing the line division algorithm . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Discussion and conclusions 125

7.1 Current system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 Improve reliability and usability . . . . . . . . . . . . . . . . . . . 128

7.2.2 Improve the recognition of handwritten mathematics . . . . . . . 131

7.2.3 Incorporate feedback and further testing . . . . . . . . . . . . . . 131

7.2.4 Improve the extended Classroom Presenter . . . . . . . . . . . . . 132

7.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Definitions 132

vi



CONTENTS

References 134

A Teachers’ Guide 143

B Teachers’ Questionnaire 152

C Students’ Questionnaire 155

D Using the current system to write a proof 158

vii



List of Figures

1.1 Euclid’s algorithm written using the GCL. . . . . . . . . . . . . . . . . . . 9

3.1 Circle gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Using the semi-circle gesture to apply a rule . . . . . . . . . . . . . . . . . 33

3.3 Using the drag-and-drop gesture to apply a rule . . . . . . . . . . . . . . 33

4.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Usage of the Strategy pattern . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Handwritten character ‘H’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Extending the bounding box of ‘i’ . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Context menu with recognition results . . . . . . . . . . . . . . . . . . . . 43

4.6 Operator Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Brackets used for hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Rose tree that represents the expression a+b . . . . . . . . . . . . . . . . 52

4.9 How a Renderer object draws ink strokes to a viewport . . . . . . . . . . . 54

4.10 Rose tree that represents the expression a + b + c×d×e + f × g . . . . 54

4.11 Swap operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.12 Double-tap on the last addition operator . . . . . . . . . . . . . . . . . . . 63

4.13 Double-tap on the first addition operator . . . . . . . . . . . . . . . . . . 63

4.14 Double-tap on the second addition operator . . . . . . . . . . . . . . . . . 63

4.15 Double-tap on the multiplication operator . . . . . . . . . . . . . . . . . . 64

4.16 Check gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



LIST OF FIGURES

4.17 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.18 Animation for the Symmetry rule . . . . . . . . . . . . . . . . . . . . . . . 70

4.19 Using the SemiCircleRight gesture to distribute multiplication over addition 71

4.20 Result of applying distributivity . . . . . . . . . . . . . . . . . . . . . . . 72

4.21 Selection of the expression to be used in Leibniz . . . . . . . . . . . . . . . 72

4.22 Application of Leibniz using the Check gesture . . . . . . . . . . . . . . . . 72

4.23 Result of applying Leibniz . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.24 The Scratchout gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.25 Gestures’ Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.26 Templates selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.27 Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Classroom Presenter in use . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Classroom Presenter in use . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Intermediate step of a derivation of Euclid’s algorithm . . . . . . . . . . 89

5.4 Derivation of Euclid’s algorithm (Part I) . . . . . . . . . . . . . . . . . . . 90

5.5 Derivation of Euclid’s algorithm (Part II) . . . . . . . . . . . . . . . . . . 91

5.6 Derivation of Euclid’s algorithm (Part III) . . . . . . . . . . . . . . . . . . 91

5.7 Derivation of Euclid’s algorithm (Part IV) . . . . . . . . . . . . . . . . . . 92

5.8 Derivation of Euclid’s algorithm (Part V) . . . . . . . . . . . . . . . . . . 92

6.1 Level of difficulty in using the features (0 - Very easy; 4 - Very difficult) . 103

6.2 Statement: The features provided by this software can help with teach-

ing mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Do you think that animations would be useful for teaching? . . . . . . . 105

6.4 Do you think that play/pause features for the animations would be useful?105

6.5 Statement: Gestures are a good way to trigger actions . . . . . . . . . . . 106

6.6 Statement: I prefer to manipulate a formula through the structure than

manually moving the ink around to obtain the desired result . . . . . . . 106

ix



LIST OF FIGURES

6.7 Statement: I prefer to use the handwritten representation of formulae

than their representation in typeset . . . . . . . . . . . . . . . . . . . . . . 107

6.8 Statement: I find it easier to handwrite mathematics than writing it using

a keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.9 Statement: Input using a pen is more precise than using the fingers . . . 108

6.10 Did the software help you understanding the manipulations involved? . 110

6.11 Statement: This software can help me doing calculations by myself . . . 110

6.12 Statement: This software can improve my experience in the classroom . 111

6.13 Statement: This software can help me with learning calculational math-

ematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.14 Statement: This software can help me with learning general mathematics 112

6.15 If this software became available during your attendance to the Program

Calculus course, would you have used it? . . . . . . . . . . . . . . . . . . 112

6.16 Would you use this software for anything else? . . . . . . . . . . . . . . . 113

6.17 Statement: Being able to send answers from my computer to the teacher’s

makes it easier to participate in the lectures . . . . . . . . . . . . . . . . . 113

6.18 Statement: Being able to send answers from my computer to the teacher’s

makes the lectures more interactive . . . . . . . . . . . . . . . . . . . . . . 114

6.19 Do you think animations would be useful to understand better how al-

gebraic rules are applied? . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.20 Do you think that play/pause features for the animations would be useful?115

6.21 Statement: Gestures are a good way to trigger actions . . . . . . . . . . . 115

6.22 Statement: The gestures used during the presentation are adequate to

the operations to which they are associated . . . . . . . . . . . . . . . . . 116

6.23 Relation between the students’ opinion about the calculational method

and the software (method,software) . . . . . . . . . . . . . . . . . . . . . 117

6.24 Statement: I find it easier to handwrite mathematics than writing it using

a keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.25 Input using a pen is more precise than using the fingers . . . . . . . . . . 118

6.26 Sample 1: Line division (algorithm 1) . . . . . . . . . . . . . . . . . . . . 119

x



LIST OF FIGURES

6.27 Sample 1: Line division (Ink.Divider) . . . . . . . . . . . . . . . . . . . . 120

6.28 Sample 2: Line division (algorithm 1) . . . . . . . . . . . . . . . . . . . . . 121

6.29 Sample 2: Line division (algorithm 1) – intersecting lines . . . . . . . . . 121

6.30 Sample 3: Line division (Ink.Divider) . . . . . . . . . . . . . . . . . . . . 122

6.31 Sample 3: Line division (algorithm 1) . . . . . . . . . . . . . . . . . . . . . 122

6.32 Sample 4: Line division (algorithm 1) . . . . . . . . . . . . . . . . . . . . . 123

1



CHAPTER 1

Introduction

Teaching effectively requires a clear presentation of the material being taught and in-

teraction with the students. The more the students feel involved, the better they will

follow and understand the lectures. Teaching mathematics is no exception, and being a

subject that many students find difficult, a clear and interactive presentation becomes

even more important. A good way to capture the attention of the students (or of an

audience in general) is to show in real-time how the results presented are used or ob-

tained. For example, showing in real-time the steps of a calculation helps understand-

ing how the final result was attained and how to use the mathematical rules that were

applied.

For many decades, the blackboard was used in lectures as the main tool of instruction.

The blackboard is useful to keep a record of what is being discussed and to present

the material. Its flexibility is one of its great advantages as it allows to easily add new

information when it is needed. However, it has some drawbacks:

• the material has to be written during the lecture — which can lead to errors and

uses valuable time that could be spent explaining and discussing the material;

• at the end of the lecture, the blackboard is rubbed off — the students have to

copy the material during the lecture making it more difficult to pay attention to

the lecturer’s explanations; also, if the lecturer wants to use the same material for

another lecture, they have to rewrite it again.

• when no space is left, parts of the material have to be cleared from the blackboard,

making it more difficult to relate material given later in the lecture with material

that was already cleared.

2



CHAPTER 1: INTRODUCTION

The ideal would be to write in advance all the material that is going to be presented,

and leave for the lecture time only the parts that should be accomplished by discussion

and interaction with the audience. Also, it would be good to provide at the end of the

lecture a copy of the material presented, so that the audience could print it and study

it. A presentation technology that helps achieve some of these points is the overhead

projector where one places transparencies containing the lecture’s material. For many

years this was a very popular way of lecturing. However, transparencies are not easily

edited and the discussion during the lectures is usually recorded on the blackboard,

whose drawbacks were presented before.

In the last decade, the use of computers connected to data projectors has become the

most popular presentation technology. The presentations commonly consist of elec-

tronic slides which are prepared in advance and easily made available after, or even

before, the lectures. This is a clear and, usually, organised way of making a presen-

tation. Nevertheless, the electronic slides are generally fixed and work more like a

guideline to the lecture than as a medium for discussion and interaction; it is diffi-

cult to adjust them during the presentation which does not encourage interactivity. In

mathematics lectures there is a need to provide examples and details according to the

students responses and also to freely interact with the students and adapt the slides.

Thus, electronic slides are not the most appropriate to teach mathematics. But the lack

of flexibility of the electronic slides is not the only problem: as the traditional input

devices for computers are the mouse and the keyboard, it is hard and laborious to

write electronic slides containing mathematics. In fact, it is hard to write any kind of

document containing mathematical notation using an ordinary computer.

The goal of this project is to design a structure editor of handwritten mathematics. The

editor is oriented for Tablet PCs and its aim is to help with teaching mathematics by

providing a way to manipulate the structure of mathematical expressions [Men08]. The

main mathematical method supported by the library is the calculational method which

is detailed in section 1.2.

The technical development of the editor is divided in two main parts. First, a class

library (called MST library1) that implements mechanisms for creating and manipulat-

ing the structure of handwritten mathematical expressions is provided. The library

also implements a mechanism that allows structure manipulations using gestures and

a mechanism that allows structure manipulations to be shown step-by-step. The details

1MST stands for Math∫pad Tablet.

3



CHAPTER 1: INTRODUCTION

about this class library are presented in chapters 3 and 4.

Second, to demonstrate that the MST library can be easily integrated into other tools,

and to illustrate the concepts implemented, the library was integrated into the prize-

winning tool Classroom Presenter. The details about this integration are shown in chap-

ter 5.

1.1 Writing mathematics using a computer

As mentioned in the previous section, it is hard to write mathematics using a computer.

The difficulty is mainly due to its usual input devices: the keyboard does not support

all mathematical symbols and the use of the mouse to click in buttons to input the sym-

bols is time-consuming. To overcome this problem, languages like LATEX and MathML

were created and, in fact, they are very useful and widely used. However, their use

requires a huge mental effort from the user to transform mathematics into valid LATEX

or MathML code.

Applications like Math∫pad [Ver00, BV97], Scientific WorkPlace [sw10] , MathMagic [mm12]

and MathType [mt12] were also created to simplify the writing of mathematics. But

their input devices remain the keyboard and the mouse, which still present some diffi-

culties to the end user.

Clearly, writing mathematics using pen and paper is much more natural2 and easier

than using a computer. But one problem with this approach is that the paper is not

digital. It is possible to scan the paper (off-line data), to store it in a digital format, and

to recognise the handwriting directly from the image. However, this is not dynamic

and does not offer the possibility of editing the piece of paper as much as one would

like or need.

It is of great interest to combine computer flexibility with handwritten simplicity to

write and present mathematics, and that can be achieved by using a Tablet PC or any

other device that provides ink collection (usually called pen-based technologies) —

i.e. that allows input of handwriting. Although these devices facilitate the writing

of mathematics, the available software does not allow us to edit and manipulate the

structure of the mathematics used in areas such as algorithmic problem solving [Bac11,

VB99, Bac03, Bac01]. Existing applications are more concerned with the recognition and

2In this thesis, the adjective natural is often used to describe features or methods that are simple to use

and do not interfere with the user’s thought.

4



CHAPTER 1: INTRODUCTION

evaluation of mathematical expressions than with the way of doing mathematics. Also,

the majority of these tools do not allow combined writing of mathematics and text,

which is needed to write mathematical presentations. In general, tools for handwritten

mathematics do not recognise text while tools for handwritten text do not recognise

mathematics.

This project is aimed at fulfilling the need of writing and presenting mathematics in an

effective, flexible and also reliable way. The purpose is to provide a base for a system

that assists in the process of doing mathematics and, in particular, provides structured

manipulation of mathematical expressions. The system is oriented to the mathematics

used in algorithmic problem solving and will be capable of recognising and editing

mathematics written on the Tablet PC’s screen. However, the focus of this work is not

on recognition but, instead, it is on how to create structure from recognised handwrit-

ten mathematics and on how to allow its manipulation.

1.2 Calculational method

Two decades of research on correct-by-construction program design have created a new

discipline of algorithmic problem solving and shed light on the underlying mathe-

matical structures, modelling, and reasoning principles. Starting with the pioneering

work of Dijkstra and Gries [DS90, GS93], and in particular, through the development

of the so-called algebra of programming [BM97, BH93], a calculational style [Bac01, vG90]

emerged, emphasising the use of systematic mathematical calculation in the design of

algorithms. The realisation that such a style is equally applicable to logical arguments

[DS90, GS93] and that it can greatly improve on traditional verbose proofs in natural

language has led to a systematisation that can, in return, also improve exposition in

the more classical branches of mathematics. In particular, lengthy and verbose proofs

(full of dot-dot notation, case analyses, and natural language explanations for “obvi-

ous” steps) are replaced by easy-to-follow calculations presented in a uniform format3.

Moreover, each step of a calculational proof is usually accompanied by a hint justifying

the validity of that step. The following is an example of a calculational proof:

3The format used is due to Wim Feijen.

5



CHAPTER 1: INTRODUCTION

A

= { p }

B

⇐ { q }

C

the above is written to prove that A ⇐ C. A, B and C are expressions, and p and q are

hints why A = B and B ⇐ C, respectively. Some relevant advantages of this format are

that the hints reduce the search space, there are no repeated intermediate expressions,

and it can be immediately concluded that A ⇐ C, just by looking at the first and last

expressions and at the relations connecting them. Another important aspect of this

format is that it forces the writer to provide explanations for each step.

Furthermore, while many mathematicians transform formulae only after interpreting

them, exponents of the calculational method prefer to work with uninterpreted formu-

lae and manipulate them according to their symbols and associated rules (i.e., let the

symbols do their work). One of the incentives for the work presented in this thesis is

the belief that the systematisation of a calculational style of reasoning, proceeding in a

formal, essentially syntactic way, can greatly improve on the way proofs are presented.

This view is supported in a recent study that, through a quantitative analysis, shows

that students seem to prefer or understand better calculational proofs [FM09].

1.3 Objectives

Some studies have shown that the use of the Tablet PC in lectures can improve teach-

ing [Cro08]. A study made using Classroom Presenter, a system developed to create

interactive presentations using a Tablet PC, indicates that the use of a Tablet PC allows

the lecturer to cover more material in the same period of time or to spend more time

explaining and discussing the displayed material. Also, the same study claims that

the students think that this is a good teaching method. More details of this study are

presented in [Oli05]. Similar studies, that also support the use of Tablet PCs in the

classroom, are detailed in [Fit04] and [SAHS04].

Tablet PCs are now widely available with handwriting recognition built into the soft-

ware. Generally, the text recognition software is extraordinarily effective but it falls

6



CHAPTER 1: INTRODUCTION

down badly when mathematical expressions (including computer programs) are in-

cluded in the text. Moreover, because the internal representation of what has been

written is hidden, it becomes difficult to modify the handwriting. Even worse, mod-

ifications can be unreliable. In the last few years, much effort has been done to im-

prove mathematics recognition and many projects on recognition of mathematical ex-

pressions are currently taking place. Some of these projects are mentioned and briefly

detailed in section 2.3.

The goal of this project is to develop a system that will assist in teaching the dynamics

of algorithmic problem solving [Bac11, VB99, Bac03, Bac01]. The system must allow

straightforward, flexible and reliable manipulation of documents containing substan-

tial amounts of non-standard mathematical expressions [GKP94, vG90, GS93, GFvGM90]

(non-standard in the sense of not being the sort of mathematics that is a well-accepted

part of pre-university mathematics education).

The Math∫pad system [BV97] developed by Richard Verhoeven under the direction of

Roland Backhouse, and first released in the mid 1990s, is a structure editor for mathe-

matical documents that has proved very convenient for writing research articles across

a wide spectrum of computing science. But of course, given the time that it was devel-

oped, it assumes keyboard/mouse input, and keyboard/mouse manipulation of docu-

ments. The goal is to develop a system akin to the Math∫pad system that uses handwrit-

ten input and pen gestures to manipulate a document. However, this system will be

oriented to the teaching and presentation of mathematics rather than the preparation

of technical documents in a conference style format. The benefits for teaching algorith-

mic problem solving with this system can be enormous. It will be possible to demon-

strate the dynamics of problem-solving in a manner that improves on blackboard-style

teaching by exploiting the reliability of computer software in copying and manipulat-

ing structured information.

As previously mentioned, the system should provide flexibility and reliability in the

manipulation of documents containing mathematical expressions and in the syntactic

manipulation of formulae. The main object of the syntactic manipulation features will

be algebraic calculations. For example, one of the goals is to apply actions to a partic-

ular expression automatically — automatically in the sense that the user does not have

to determine the result of applying the action. As an example, consider the following

expression:

a ∨ (b ∧ c)

7



CHAPTER 1: INTRODUCTION

Knowing that ∨ distributes over ∧, it would be useful to apply the distributivity rule

automatically rather than manually. Not only would it avoid the introduction of errors,

but it would also require less effort from the user. By using a button or a gesture, the

distributivity rule would be applied and the following result obtained:

(a ∨ b) ∧ (a ∨ c)

The way this will be achieved is detailed in section 4.9.

The system developed does not know which actions can be applied to a certain expres-

sion. It only has the general knowledge of how to apply the rule. Checking the validity

of applying it to the expression is the responsibility of the user. The user should be

in control of the mathematics being used. As a result, the library allows the rules to

be applied freely, allows the definition of new binary operators in runtime, and also

allows the redefinition of binary operators (that is, changing the operators precedence

and the way that they associate).

The system allows the application of several known rules (like distributivity, associa-

tivity and symmetry) automatically. This ensures some of the reliability and flexibility

desired. Moreover, it helps to avoid the introduction of errors since the system (if ev-

erything goes as expected) will apply the rule exactly as instructed.

Another feature included in the system is a limited form of combined writing of text

and mathematics that can be used to annotate algorithms and to justify steps in calcu-

lations.

Furthermore, it provides facilities to write and edit algorithms and calculational proofs

(mentioned in section 1.2). As said before, this system will be used, in particular, to

teach algorithmic problem solving and the interactive nature of the system is crucial to

achieve this goal. In particular, it supports the writing of algorithms using the Guarded

Command Language (GCL) [Dij76]. Figure 1.1 illustrates an example of an algorithm

written in GCL.

In summary, this project has the following goals:

• To develop a structure editor — in the shape of a class library — for structural

editing of mathematical expressions using handwritten input. The editor is ori-

ented to the mathematics that is used in algorithmic problem solving [Zei99,

Bac03, Pol57, GKP94], but is also general-purpose. The library is a proof of con-

cept, capable of being further developed into a professional product;

8



CHAPTER 1: INTRODUCTION

{M > 0 ∧ N > 0}

m, n := M, N;

{m gcd n = M gcd N}

do

n < m → m := m − n

2

m < n → n := n − m

od

{m = n = m gcd n}

Figure 1.1: Euclid’s algorithm written using the GCL.

• Demonstrate the use of the library’s features to support some teaching scenarios

for algorithmic problem solving presented in [Fer10];

• Integrate the class library into an external tool to show that it can be easily used

by other programmers and researchers.

1.4 An example task

As mentioned in the section 1.3, one of the goals of this project is to support the teaching

of mathematics. Examples of what can be taught in a maths lecture, together with

suggestions on how to teach it, are presented in the teaching scenarios shown in [Fer10].

To illustrate how the system can be used during a lecture, a demonstration of how it

can be used to help with the presentation of Scenario 1 in [Fer10] is shown. The problem

presented in Scenario 1 is the following:

Problem: Prove that the product of four consecutive positive natural numbers cannot

be the square of an integer number.

Following the solution presented in this scenario, the first thing that the teacher would

write would be the goal:

9



CHAPTER 1: INTRODUCTION

where S.n is defined to be true only when n is the square of an integer. In order to pro-

vide a justification for why the predicate S.(n×(n + 1)×(n + 2)×(n + 3)) is false, the

teacher should manipulate this predicate until it gets to a point where it is clear that the

predicate is false. Having nothing else to do, the teacher should start by manipulating

n×(n + 1)×(n + 2)×(n + 3) by using the property that multiplication distributes over

addition. As distributivity can be applied to this expression in three different ways,

it is important that the right choice is made. In the scenario, it is recommended that

the teacher asks the students which alternative should be chosen. To decide what is the

best alternative, it would be desirable to copy the expression three times and apply dis-

tributivity to each copy separately. To do that using the system, the teacher can follow

the following steps:

1. continuously perform a double tap over the multiplication operator to select the

expression inside brackets (as distributivity will be applied to this subexpres-

sion); press and release the side button of the pen to make a copy of the selection

(alternatively, the Check gesture can be used); make a tap in each position where

the copies should be placed (this will put a copy of the selection starting at the

point of the screen that was tapped):

10



CHAPTER 1: INTRODUCTION

2. use symmetry of multiplication to put in place the expression that will be dis-

tributed (e.g., in order to distribute n× over (n + 2) in the expression n×(n +

1)×(n + 2), the symmetry of multiplication is used to move (n + 2) to the im-

mediate right of n× obtaining n×(n + 2)×(n + 1)) — that is done by using the

UpDown gesture over the operator between the two expressions to be swapped;

note how the use of symmetry, which is usually left implicit, is made explicit by

the tool:

3. use the SemiCircleRight gesture to apply distributivity — the semi-circle should

start over the operator that is to be distributed and finish over the operator through

which it will be distributed (alternatively, the teacher can select the operator to

be distributed, drag it, and drop it over the operator through which it will be

distributed):

11



CHAPTER 1: INTRODUCTION

The result obtained is:

4. for each copy, apply symmetry and distributivity several times and in different

ways. The use of strict syntactic manipulation results in the following expres-

sions:

Note that, as this system does syntactic manipulation, expressions like n×n and n×1

are not simplified. However, the user can use Leibniz to simplify them.

Now, having the results of applying distributivity in three different ways, the teacher

can ask the students which option they think is the best to use in this problem. The

discussion should lead them to choose the one that is more symmetrical4, that is,

(n2 + 3×n)×(n2 + 3×n + 2).

This example shows how some of the features of the library can help with teaching.

The aim of this example is to give the reader a better idea of the type of tasks that this

library supports.

1.5 Contributions

The main contributions of this thesis are the functional and technical designs of a struc-

ture editor for handwritten mathematics with an emphasis on algebraic calculations

4In general, algebraic symmetry is a technique useful to simplify calculations. For more details, the

reader is referred to section 3.2 of [Fer10].

12



CHAPTER 1: INTRODUCTION

and oriented for teaching presentations. The central feature of the editor is the defini-

tion of structure for handwritten mathematical expressions. This allows syntactic ma-

nipulation of the expressions making it possible to accurately select, copy and apply

algebraic rules to expressions while avoiding the introduction of errors. To facilitate

the structure manipulation, gestures are used to apply manipulation rules. In gen-

eral, the gestures for each rule match the visual idea that is usually associated with

the application of the rule (for instance, for distributivity a semi-circle starting at the

operator that will be distributed and ending over the operator through which it will

be distributed is used — this matches the visual idea that one operator will be prop-

agated over the other). This makes the use of gestures more natural than the use of

buttons to trigger the rules. Furthermore, it is possible to edit the association between

gestures and rules so that users can customise the system to match their own “visual

idea” of the rule. In the context of teaching, applying an algebraic rule and obtaining

the result instantaneously may not be good enough. With this in mind, a mechanism to

support the animation of certain structure manipulations is provided. The purpose of

these animations is to show, step-by-step, how a rule is applied to an expression. The

feedback from students suggests that animations can help students understand how

the rule works (see chapter 6).

The main end-product is a class library that implements the features described above.

This class library is implemented in C# and was created in a way that makes it easy

to be used and extended by other programmers. In particular, it can evolve with new

technological developments: for instance, it is possible to connect other parsers and

recognisers to it; this is advantageous since the area of handwritten recognition is still

evolving.

To illustrate how these concepts can be used in existing applications, the class library

is integrated into Classroom Presenter, a Tablet PC based system for ink based teaching

presentations and classroom interaction. Also, some experimental features that may be

useful for teaching and writing presentations, like user-defined handwritten templates

and automatic space adjustment inside expressions, were developed (details will be

presented in Chapter 4).

13



CHAPTER 1: INTRODUCTION

1.6 Structure and organisation

Before presenting the technical and functional designs of a structure editor for hand-

written mathematics, chapter 2 explains in more detail what is meant by structure edit-

ing and provides an overview of pen- and touch-based technologies currently avail-

able. A list of tools that support recognition of handwritten mathematics is shown and

the limitations and tendencies of current technologies are discussed.

In chapter 3, the functional design of the system developed is provided. The require-

ments of the project and the decisions that were made are described.

Chapter 4 describes the technical design of the system. The most important features

are described and details of their implementation are given. The chapter ends with the

description of experimental features that may be further developed in the future.

Because the final product of this project is a class library, in chapter 5 it is shown how

external tools can import and use the features provided by the library. To illustrate

that the library can be easily integrated into other tools, the chapter also describes its

integration into the prize-winning tool Classroom Presenter.

Chapter 6 presents the results obtained from usability and suitability tests that were

performed to assess if the library’s features are usable and suitable for their intended

purpose. The testing was carried out with both teachers and students.

Finally, in chapter 7, a discussion of the achievements and the limitations of the work

developed is shown. After demonstrating how the current prototype supports the ini-

tial goals, some directions for future work are presented.

After the conclusion, some definitions of important terms that are assumed to be known

(and are not defined within the body of the thesis) are presented.

14



CHAPTER 2

An overview of pen/touch-based

technologies and structure editing

This chapter explains what structure editing is and presents some examples of editors

that provide some sort of structure editing capabilities. An overview of the pen- and

touch-based technologies currently available and a list of tools that support recogni-

tion of handwritten mathematics are provided. Limitations and tendencies of current

technologies are briefly discussed.

2.1 Structure editing

The purpose of an editor is to allow interactive creation and modification of documents.

Although most editors solely have the knowledge of how to display the documents

that they support, some are aware of the document’s underlying structure — these are

called structure editors. In a structure editor, the content of its documents is stored in a

structured way so that actions can be performed against that structure.

Nowadays, people often deal with structure editors without even noticing. For exam-

ple, in text editors that support spell-checking, when someone writes a word that the

system does not recognise, it highlights that word and suggests other terms; if someone

starts a sentence with a small letter, the system tries to capitalise it, as it thinks that this

is the structure that the document should have. Thus many text editors are structure

editors. Spreadsheet applications are another example. A spreadsheet is made of mul-

tiple cells that together form a grid of rows and columns. Being aware of this structure

makes it possible to select columns of numbers and calculate their average, and rows

15



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

can be sorted according to some criterion.

Other examples of structure editors are tools like Vim [vim12] and the integrated de-

velopment environment (IDE) Microsoft Visual Studio. These tools support, for instance,

syntax highlighting and bracket matching, which help when writing in a structured

language — such as a programming language — by making structures and syntax er-

rors visually explicit. These features are made possible because the tools are aware of

the underlying structure of the documents they support.

The tools mentioned above are not “advertised” as structure editors. In fact, it is un-

usual to find tools that clearly state that they are structure editors, since the structure

editing happens “behind the scenes”. One tool that is clearly “advertised” as a struc-

ture editor, is the Math∫pad system [BV97]. Math∫pad is a structure editor for mathemat-

ical documents that has proved very convenient for writing research articles across a

wide spectrum of computing science. The goal of this system is to make it possible

to write mathematical documents in which mathematics and text are completely in-

tegrated. It aims to assist in the process of doing mathematics rather then obtaining

results. Its main features are expression manipulation and a system for defining and

using structured templates (called stencils).

In terms of expression manipulation, Math∫pad provides functions for rearranging ex-

pressions, and for finding and replacing mathematical expressions with a given struc-

ture. The functions provided for expression manipulation are Copy, Swap, Reverse, Dis-

tribute, Factorise, Group, Ungroup, Apply, Find and Rename. These are applied by using

multiple selections and by choosing from a menu the function to be applied.

Regarding the Math∫pad stencils, they are files describing the visual and logical struc-

ture of notational elements in a document. This feature is very important because it

does not restrict the user to a certain set of notations. The user can define and redefine

their own notations. This is important in research since new theories may involve new

notations. Also, as it is impossible to provide a system that supports every single exis-

tent notational convention, the fact that anyone can define their own notations makes

this system widely usable and flexible.

The Math∫pad system has inspired the project presented in this thesis. The ultimate goal

of Math∫pad was to provide a system that could eliminate the use of pen and paper for

the calculations of the intended users of the system. However, that did not happen

and they believe the main problem lies with computers and not with Math∫pad (see

page 15 of [BV97]). One of the main problems with the “common” computer is that it

16



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

receives its input through the keyboard and mouse. The keyboard is very limited in

keys and it does not support all the mathematical symbols. To provide support for all

the symbols, one would have to create many combinations of keys or different writing

modes, which can be very confusing. Using the mouse to select symbols from a menu

can be a solution, but it is very time-consuming. Also, both solutions interfere with

the users thought as the users have to focus on the input of mathematical symbols

rather than on the calculations. In an attempt to address these problems, this project

was born. The system developed aims at making the input of mathematics easier by

providing handwritten input. Its principal goal is to make it more intuitive to apply

rules in a calculation and to show to an audience how the rules are applied. In the rest

of this thesis, it is shown how these goals are met. However, as the reader will have the

opportunity to see, the system is still some steps away from providing simple input for

mathematics.

2.2 Pen- and touch-based technologies

In the last few years, the interest for hardware tools that allow alternative input to

the keyboard and mouse has grown quite spectacularly. The release of touchscreen

gadgets into the market, specially smartphones, has made this type of technology very

popular. These gadgets have had a great reception as their interface is easy to use and

most people already know how to use them. Moreover, with the recent release of touch

tablets into the market (the iPad, Samsung Galaxy Tab, etc), it seems that the industry is

moving towards pen- and touch-based technologies. However, technology that allows

alternative input has been around for quite a long time: the first Tablet PC appeared in

the 1950s!

Throughout this thesis, when the term Tablet PC is used, it refers to a computer with

an Electromagnetic Digitizer. With this type of digitizer, a special pen is needed as a

pointing device. This pen is a stand-alone device containing all the circuitry needed to

interact with the computer. Other types of digitizers, which will be referred as touch-

screens, accept as pointing device any object (finger, normal pen, etc). These digitizers

have some disadvantages. For instance, they only detect actions when the pointing

device touches the screen — no hovering is detected. Also, as no special device is used,

the input is too imprecise — specially when it concerns to handwriting.

Many tools that allow input from stylus, finger or some other device to touch the

17



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

screen, only allow one input touch at a time. However, some tools allow two or more

input touches simultaneously — these are called multi-touch devices1. The multi-touch

ability is mostly used in visual manipulation of contents (resizing of images, rotation of

objects, navigation through maps, etc) as it provides a very intuitive interface for these

tasks.

Nowadays, some computers are equipped with both a digitizer that requires a stand-

alone pen and a touchscreen. A problem with these machines is that, when using the

pen, the user tends to rest his wrist against the screen which will trigger actions that the

user does not want to start. Thus, the touchscreen tends to interfere with the use of the

pen. This situation may change soon as Microsoft Research is currently trying to com-

bine the use of pen and finger to increase functionality and improve user experience.

The name of the project that explores this is Manual Deskterity [HYP+10] and it inves-

tigates how one should use pen and touch in interface design. The conclusion they

have reached is the following: the pen writes, touch manipulates, and the combination

of pen and touch yields new tools. ( Their system already overcomes the problem of

“wrist resting against the screen”.) The techniques explored in Manual Deskterity were

implemented in the Microsoft Surface [Mic12] with a special pen constructed for the

purpose.

The Microsoft Surface is a multi-touch computer that responds to natural hand gestures

and real-world objects. The key features of this system are:

• users can use their hands to grab digital information and use touch and gestures

to manipulate the on-screen content;

• it supports multiple users — several people can use the system simultaneously

and interact with each other;

• it supports multi-touch;

• and finally, it supports object recognition — users can place real-world objects on

the screen and the system will recognise them.

The Microsoft Surface is already in use in many companies. This device, together with

the Manual Deskterity, are possibly a preview of what computer systems will look like

1Some authors define multi-touch as the ability to simultaneously register three or more distinct input

touches. However, in this thesis, the term multi-touch is used to refer to the ability to register more than

one input touch at a time

18



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

in a near future.

Another example of a system that combines pen and touch is the Touch & Write [LREND10].

The Touch & Write is a novel rear-projection tabletop that combines infrared technology

for the normal touching with the digital pen technology for high resolution handwrit-

ing. This allows implicit detection of pen and touch use, which is good to create sys-

tems where the touch and pen do not interfere with each other. Similarly to the Manual

Deskterity approach, they use in their software (LeCoOnt) touching actions for visual

manipulation and pen-actions for drawing, for connecting concepts, and for handwrit-

ing. The LeCoOnt is concept mapping software.

The touch- and pen-based technologies are used in many tasks. They are used, for ex-

ample, for geometric constructions [MK04], for styling design of 3D geometry [KDS06],

sketching in the hardware-software integrated interactive product design process [Nam05],

for creating dynamic mathematical illustrations [LZ04], for 3D role modelling for chil-

dren [LWD08], and to assist web designers in the early stages of web design [LNH+01].

An area where these technologies have attracted special attention is education. In par-

ticular, the Tablet PC has attracted much attention as an aid for teaching, as it can be

used with a projector to allow interactive presentations — which has been shown to

be successful with the students (this has been mentioned in more detail in section 1.3).

This success possibly led to the creation of interactive whiteboards.

An interactive whiteboard (IWB) is a large display that is connected to a computer and

a projector. The screen of the computer is projected onto the display and the user can

control the computer by using a pen, finger or other device against the whiteboard.

This resembles the traditional blackboard while bringing to the classroom/workspace

the computer capabilities. Other than in the classroom, the IWBs are used in a variety

of settings. These include corporate board rooms, brainstorming sessions, collaborative

live training and more. IWBs are very useful to promote interactivity with an audience.

In conclusion, there is a wide variety of technologies for pen and touch input. These

technologies are used in many distinct areas and they are getting better and better.

These technologies are now rapidly evolving and it is quite difficult to keep up with all

the developments in the area. The goal of this section is to give the reader an idea of

what is currently available.

19



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

2.3 Software for handwritten mathematics

In this section, some of the tools and packages that are capable of receiving handwritten

mathematics as input and recognise it, are presented. For each of these tools, a brief

summary is given.

MathJournal [mju12, WD03] is an interactive tool for the Tablet PC that provides a

natural and intuitive environment for mathematical and engineering problem solving.

The software recognises, interprets and provides solutions for handwritten or hand-

drawn mathematical and engineering constructions. This tool recognises a great num-

ber of mathematical symbols. It evaluates several kinds of mathematical expressions

and, given an expression, plots the corresponding graph. This application is available

for the Windows operating system.

JMathNotes [jmn11] is a JAVA application that recognises mathematical expressions

written on the screen and provides manipulation and correction of the expressions via

menus and gestures. It produces LATEX and generates output suitable to use in word

processors and symbolic computation. It also provides algebraic manipulation through

the computer algebra system Mathematica. This application is free software and can be

modified or/and redistributed under the terms of the GNU General Public License. It

can be used in Windows, Linux or any other Unix platform. This project seems to have

been abandoned since its webpage is no longer available and no current information

about this project could be found.

Natural Log [nlu03, Mat99] is an applet written in JAVA that was created as a demon-

stration tool for the concepts presented in Nicholas Matsakis’ Master Thesis. It recog-

nises all the basic mathematical symbols, some Greek letters, summations, fractions

and square roots. It does not recognise integrals nor subscript notation. This applet

produces LATEX and MathML and does not evaluate mathematical expressions.

The software package Caltech Interface Tools (CIT) [cit12] is free software and recog-

nises handwritten mathematical characters. The CIT code requires training data which

creates user specific handwriting profiles. Little information can be found about this

software package and it seems to be an abandoned project. However, in 2004, the cre-

ators of the Math Speak & Write tool have created a DLL (Dynamic-link library) that

contains all of the CIT handwriting recognition code and makes it easily accessible

through a small number of functions.

Math Speak & Write [msw12] system is designed to facilitate mathematics input using

20



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

both voice recognition and handwriting recognition. This system was written for Mi-

crosoft Windows in the C# programming language. It uses a combination of Microsoft’s

Ink system to collect ink strokes and their DLL version of the CIT Handwriting Recog-

niser for the recognition of the handwriting. For the speech recognition they use the

Microsoft’s Speech SDK 5.13 with a custom grammar.

Freehand Formula Entry System [ffe05, Smi99] allows the freehand entry and editing

of formulae using a pen and tablet. Automatic handwritten formula recognition is

then used to generate a LATEX command string for the formula. It is implemented in

C++ and Tcl/Tk and it is distributed under the GNU General Public License. This

system recognises input using a character recogniser (the CIT, mentioned above) and an

expression parser (DRACULAE). It can be used either in Linux or Windows (through

Cygwin [cyg12]). The latest version of this system was released in May 2004.

Java Interactive Mathematical Handwriting Recogniser (JIMHR) [jim12] is a tool that

processes handwritten input through a mouse or a pen and outputs the corresponding

mathematical formula in real-time as an image and either as LATEX or MathML. This

program allows the user to correct any mistakes resulting from misclassification or to

rearrange the symbols to suit their needs. JIMHR runs in Unix, Linux and Windows.

This system is based on the Natural Log and Freehand Formula Entry System that

were mentioned previously.

The MathBrush [mbu12, LLM+08] system allows the user to enter mathematical ex-

pressions with a pen, recognise them and send the expressions to a computer algebra

system which will provide a final result. This system was designed to provide an envi-

ronment for experimenting with the various components needed for doing mathemat-

ics with pen-based devices. This tool has some gestures defined and they were chosen

to be similar to the ones that the user uses while writing using pen and paper and also

to be consistent with other pen-based applications. An important feature of this tool

is that it provides logging of mathematical manipulations. This means that it keeps

track of all the user’s actions in one math sheet. This is a currently active project and

its recognition capabilities seem very accurate.

Another existing tool is Infty Editor [ieu12, FKS03]. This editor has online recognition

of handwritten mathematical expressions and as soon as a character is written, it is

automatically rewritten as neat strokes in an appropriate position and size. This editor

provides output in several different formats: LATEX, MathML, PDF, etc. This system can

communicate with the computer algebra system Mathematica and it is planned that in

21



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

the future it will communicate with various computer algebra systems.

MathPad2 [mat06, LZ04] is a system for the creation and exploration of mathematical

sketches. It is based on a novel concept of mathematical sketching, making dynamic il-

lustrations by combining handwritten mathematics and free-form diagrams. MathPad2

is designed so a user can create simple illustrations as if they were working with pencil

and paper.

MathPaper [mat12, ZMLL08] is another tool that recognises handwritten mathematics.

It allows free-form handwritten entry of multiple mathematical expressions to provide

symbolic and numerical computational assistance. It uses real-time recognition and

supports gestural and widget-based interactive editing. This tool also explores novel

approaches to entering and manipulating matrices and allows handwritten entry of

mathematical algorithms.

AlgoSketch [LMZL08] was created in the context of the MathPaper project and it is a

pen-based algorithm sketching prototype with supporting interactive computation. It

allows writing and editing of 2D handwritten mathematical expressions in the form of

pseudocode-like descriptions to support the algorithm design and development pro-

cess.

Starpad SDK [sta12] provides a convenient interface for a broad layer of pen-centric

functionality in addition to some research functionality. It includes an interface to

stroke-level operations, a recognition library for handwritten math and gestures, some

UI techniques such as GestureBar [BZW+09], and a pen- and gesture-based application

shell supporting selection, undo, zooming, text input, images, and save/load. This

project can be used freely for non-commercial use.

MoboMath [mob12] allows handwritten input of mathematics and translates it into

a formatted layout that can be copied and used in Microsoft Word, Maple, MathML,

TEXand LATEX, Images, and more. It includes a set of built-in editing tools, that allow

the user to add, delete, correct, or rearrange any part of an expression using the pen.

It makes use of gestures to perform some actions (for example, the recognition is trig-

gered by a right-down gesture).

Detexify [det12] is a free-software symbol recogniser written in Ruby. It recognises

individual symbols and it translates them directly to the correspondent LATEX code. Al-

though this is a very recent project, it already supports many symbols that are used in

algorithmic problem solving (for example, it is one of the few recognisers that recog-

22



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

nises correctly the ‘〈’ symbol used in quantifiers). This means that if the project be-

comes more mature, it may be adapted to work with the tool described in this report.

Maple [map12] is a very powerful mathematical computation engine that allows the

use of handwriting to sketch symbols in order to help finding easily the symbol that the

user wants to use. The symbol recogniser searches through all of the available symbols

and offers a choice of probable matches. This symbol recogniser is currently being used

in the project described in this report.

Finally, the Mathink[SW06] system provides a user interface allowing digital ink to be

collected from a pen, mouse or other device. It provides immediate recognition results

for the handwritten expressions (after an adjustable time delay) along with other high

ranked candidates (so that the user can easily select other alternative). The recognition

results accepted by the user are displayed on top of or instead of the original ink. After

the user gets the correct result, the typeset expression is parsed to a standard mathe-

matical format, such as Presentation MathML. At this point the user can choose to send

it to a symbolic computation back-end to perform further computation such as evalua-

tion, simplification and solving. In addition to mathematical expressions analysis, the

Mathink system offers a drawing mode (where ink is recognised as geometrical shapes)

and also a “free ink” mode (where ink is not sent to the recogniser). This system also

allows addition of new symbols to its database.

The main focus of most of the tools presented is mathematical recognition (or symbol

recognition). Some, like MathJournal, support the evaluation of mathematical expres-

sions. However, none of these tools provides facilities for structured manipulation of

mathematical expressions and none of these support the mathematics used in algorith-

mic problem solving.

2.4 Limitations and tendencies of current technologies

Although pen- and touch-based technologies have evolved a lot in the last few years,

these technologies still have some limitations.

Concerning handwriting recognition, current recognition systems do a good job but, as

handwritten styles differ from user to user, it is basically impossible to provide systems

that are fault free. Moreover, as there are many symbols and objects to be recognised,

it is only natural that some may be mis-interpreted as other symbols/drawings that

23



CHAPTER 2: AN OVERVIEW OF PEN/TOUCH-BASED TECHNOLOGIES AND STRUCTURE

EDITING

are similar in representation. However, current interfaces already provide good ways

to let the user be in control of what is recognised by letting them choose alternative

recognition results.

Regarding the use of gestures (through the use of pen or touch), there is a limit to the

number that should be used. Some systems use too many gestures, making it almost

impossible for the user to use them all. In general, users cannot remember too many

gestures easily. And this is not the only problem: gestures may interfere with each other

and with the user’s tasks. Having too many gestures defined will cause accidental

touches on the screen and attempts to handwrite, to be mis-interpreted as gestures

triggering unwanted actions. This can easily become a serious usability problem. This

opinion is supported by the decision of Microsoft to provide just 9 touch gestures in

Windows 7.

Current technologies are showing a tendency to support touch and discard the use of

pen. However, pen-based systems provide a more precise input and it is more natu-

ral to use a pen to write than to use the finger. The pen is what most people use to

handwrite since their infancy. Most of the gadgets built for entertainment purposes

will possibly continue to follow the touch tendency. However, the author believes that

professional tools, specially the ones for areas that involve handwriting recognition,

will possibly tend to explore more the pen-based approach.

Finally, it has to be said that one of the main parts of these technologies is recognition.

Be it handwritten text, mathematics, gestures or objects placed against the computer’s

screen, all of them have to be recognised so that they can be manipulated. In the con-

text of this project, the recognition of handwritten mathematical expressions is a major

technological problem. A suitable recogniser that can be used within the class library

still has to be found. Not only are most of the recognisers currently available propri-

etary software, but also none of them seems to supports all the desired symbols and

mathematical constructions. Most systems support the mathematics that is most used

in school and/or the mathematics used in a particular area for which they were created.

24



CHAPTER 3

The functional design

In this chapter, the functional design of the MST library and the decisions that were

made are provided. Since the main goal of this library is to teach algorithmic problem

solving, each decision was taken with this in mind but also with care to make the sys-

tem useful for other general mathematical tasks. However, the needs of the lecturers to

teach algorithmic problem solving were always the main concern. The ideas explored

in this work were presented in a preliminary stage at the “‘38th ASEE/IEEE Frontiers

in Education Conference” [Men08] and were received with enthusiasm by both the re-

viewers of the paper and the audience of the presentation. The ideas were also well

received by the participants in the testing and evaluation of this project (see chapter 6

for more details).

The following decisions were made before the start of the project:

• the system will be oriented for teaching algorithmic problem solving;

• the software will be a Tablet PC application;

• handwriting will be used as the main input format.

These decisions can not be changed as doing so would be against the requirements of

the project.

3.1 Library versus standalone editor

The final product of this project could be made available in two different ways:

25



CHAPTER 3: THE FUNCTIONAL DESIGN

• as a standalone application — i.e., a ready-to-use structure editor that can be used

immediately by the users;

• or, as a class library — i.e., a collection of classes that can be used to extend exist-

ing ready-to-use tools to support handwritten mathematics manipulation.

As this project aims at supporting the teaching of algorithmic problem solving, creat-

ing a tool tailored to its main group of users could restrict the use of its facilities by

other groups — the library’s facilities can be useful in other environments and, as such,

their use should not be limited to a single tool. Also, having in mind that this project

was done in a research environment, it would be difficult to create a professional tool.

Furthermore, the aim of research is to provide results that can be used and further de-

veloped by others. For these reasons, the main product of this project should be a class

library that can be easily used by existing tools and extended if needed. This way, its

features can be used in different environments and they can be adapted to the needs

of its users. In order to make it easy for the library to be extended and used by others,

it should be clearly structured. One way of doing that is to organise the library into

modules where each module supports a set of features that are related and where each

module is independent from the others. This way, programmers can extend or use only

the modules whose features are of interest for them.

Decisions:

• The system should be provided in the form of a class library.

• The library should be organised in modules that can be used indepen-

dently.

3.2 Supported notations

As this library is aimed at supporting the mathematics used in the teaching of algo-

rithmic problem solving, simple arithmetic and logic expressions should be supported.

Also, it should support the calculational proof format shown in section 1.2 and the

writing of algorithms using the Guarded Command Language (for an example, see figure

1.1). It should also be possible to define new operators and redefine their properties,

26



CHAPTER 3: THE FUNCTIONAL DESIGN

like their kind (infix, prefix, postfix, right and left) and precedence. This allows the

system to be adapted to the user’s needs.

3.3 Typeset versus handwriting

Most existing structure editors receive the input through the use of the keyboard or

mouse and manipulate the typeset information. However, input using these standard

devices can be a difficult task when it concerns mathematics. A more natural way

to input mathematics is to handwrite it. However, handwritten input still has some

drawbacks.

In a typeset environment, the input is controlled and precise, since there are only a finite

number of keys or symbols for input and each symbol has a precise representation. As

a result, when a key or combination of keys are pressed, the input is precise and clear,

which facilitates the task of creating structure. On the other hand, in an environment

where handwriting is the input of choice, the input is less precise, i.e., the same input

can be written in many different ways by different users (due to differences in users’

handwriting). This makes it more difficult to identify the input and create the structure

that represents it. Even with these problems, handwritten input can be beneficial and

thus the decision was to use handwritten input instead of normal typeset since the aim

of the system is to support teaching and, in a teaching environment, having the possi-

bility to write naturally and easily is very important in order to avoid interruptions in

the users reasoning and in the lectures.

Having a mixture of handwriting with typesetting was also considered. However, as

this system is to be used on Tablet PCs, it is difficult to have typeset input since there

is no physical keyboard available in the tablet mode. In some platforms, a virtual key-

board is available, which can be convenient for small editing tasks, like editing recog-

nition results returned by a recogniser. However, using it regularly for input is too

tedious since one tap on the screen has to be done for each key to be pressed — which

clearly takes time and is not very productive.

Decisions:

• Handwriting should be used as the main input method.

• For small editing tasks, a virtual keyboard can be used.

27



CHAPTER 3: THE FUNCTIONAL DESIGN

3.4 Handwriting recognition

As in this system mathematical expressions are handwritten, they have to be recog-

nised before structure can be created. For this task, an existing recogniser should be

used (since this project’s aim is not to create recognition facilities). At the start of this

project, there were not many recognisers available for handwritten mathematics that

could be used within this project. Most were proprietary software and no permission

was given to use them. The only company that gave access to their recogniser was

Maplesoft. For that reason, throughout this project, this is the recogniser used. As their

recogniser is for individual symbols, it does not take into account the context of what

is being written and returns only the combination of the recognition results for each

symbol — which obviously returns a wrong recognition most of the times. As this is

a major setback for the final product, the development of the system has to take into

account that the recognition of mathematical formulae is evolving very rapidly and

that recognisers that are more suited for the system may become available at anytime.

Thus, the system should be able to easily make use of new recognisers.

Decisions:

• Recognition should be done by existing recognisers.

• The system should allow straightforward use of different recognisers.

3.5 Text editing versus structure editing

The most commonly used approach to edit documents is the text model. This model

consists in editing plain text by positioning the cursor in the position of the document

that is going to be edited, and adding the text by using a keyboard or other input device

that allows text input. Most computer users are familiar with the text model as it is easy

to use and simple to understand. However, to write mathematics, this approach is very

complicated. Mathematical expressions do not consist merely of plain text. They can

be very complex and errors can easily happen using the text model. Thus, to write

mathematical expressions, the text model is not appropriate.

The structured editing model consists of having the information about the structure of

the document’s content and allowing the user to edit the structure according to cer-

28



CHAPTER 3: THE FUNCTIONAL DESIGN

tain rules. Many structure editors only accept input defined by a fixed set of structure

elements and rules. Using them is often difficult since the user has to have previous

knowledge of the structure that is accepted. In spite of this difficulty, structured editing

can be very useful and beneficial. For mathematical expressions, for instance, having

the information about the structure makes it much easier to detect errors, to copy and

edit formulae, and to perform more complex operations like applying algebraic rules.

Clearly, there are still some drawbacks:

• the expressions supported are limited by the editor;

• it is very difficult to support every single option for notation, i.e., a single expres-

sion can be written in several ways and that is difficult to support.

However, the advantages for writing mathematical formulae compensate these draw-

backs. For instance, selection of content is made easier and errors become more difficult

to make — since the system will complain if given an expression that does not make

sense in mathematical terms.

As the goal of the MST library is to support mathematical writing, the structured edit-

ing model should be used to deal with mathematical expressions. Nevertheless, writ-

ing mathematics that is not recognised should still be possible, i.e., it should be possible

to write it in a free form environment (like if it was a drawing). However, in this case,

there will not exist a structured representation of the formula and thus, it will not be

possible to apply the structure manipulation features provided by the system.

Decisions:

• The structure editing model should be used for mathematics.

• It should be possible to input handwritten mathematics in a free form en-

vironment.

3.5.1 Basic editing operations

When writing mathematics, content is constantly being copied. Frequently, from one

step of a calculation to the next one, only small changes are made to the expressions.

Thus, one has to repeat things that were already written, when they could simply make

use of a copy operation and edit solely the parts of the expression that need to change.

29



CHAPTER 3: THE FUNCTIONAL DESIGN

Having a copy operation saves time for the user and also avoids the introduction of

errors, which often happens when copying content. Hence, the system should provide

a copy operation that is, preferably, simple and natural to use, since it is used often.

Also, to copy expressions, a structured selection operation has to be available. In order

to copy content effectively and accurately, the selection should also be accurate, easy to

use, and follow the expressions’ mathematical structure. This selection feature is also

needed to allow the use of manipulation rules (see section 3.6).

Decision:

• Structured selection and copy facilities that are simple and natural to use

should be provided.

3.6 Manipulation rules

In order to help with calculations and to show the dynamics of algorithmic problem

solving, the library should provide the facilities to apply some algebraic rules to hand-

written expressions. The rules that are most often used should be supported — like

symmetry, distributivity and substitution of equals for equals (Leibniz). The result

of applying a rule could be provided either in typeset or handwritten representation.

However, mixing typeset with handwriting can be confusing (since it is more difficult

to see which expressions are related due to their differences in representation) and it

does not keep the environment similar to teaching on the blackboard. For these reasons,

the result of applying an algebraic rule is provided in a handwritten representation.

Given that some rules introduce symbols that are not present in the original expres-

sion, it should be possible to define the user’s handwritten representation of characters

in order to use them whenever it is needed.

Decisions:

• It should be possible to apply algebraic rules to handwritten expressions.

• It should be possible to define and save user’s handwritten characters.

30



CHAPTER 3: THE FUNCTIONAL DESIGN

3.7 Animating manipulation rules

Having in mind that this system is aimed at teaching mathematical content, some fea-

tures should be provided to help showing to the students how calculations are done.

In particular, it is very important that students can understand how algebraic rules

are used. In the author’s experience, many students find it difficult to apply algebraic

rules because they have problems with finding which rules can be applied to expres-

sions — since sometimes it is not immediate to see that the shape of an expression is

the same of a certain rule. For example, it can be difficult for some students to see that

the factorisation,

a × b + a × c = a × (b + c),

can be applied to the expression

a × b × c + d × b × c × e

since the shape of the expression does not match exactly the shape of the rule. By using

associativity and symmetry, the two expressions can become more similar and thus it

will be easier to see that their shape is the same. Having a system that lets the students

“play” with the expressions and that applies the rules for them, can help the students

with finding how rules can be applied. In this context, the support for manipulation

rules is important. However, when rules are applied within this system, the final re-

sult of applying them appears almost immediately on the screen. This rapid change of

the original expressions to the result may be difficult to follow which can still make it

difficult to understand how the rules work. For this reason, there should be a way for

students to see how the expressions were transformed in order to get the final result.

Ideally, students should be able to see how the parts of the expressions were used to

obtain the final result. This can help them understand how it works. Thus, it would

be good to have a way to see the several steps of the transformation of the expressions

when a rule is applied.

Decision:

• It should be possible to see a step-by-step animation of how the rules are

applied to expressions.

31



CHAPTER 3: THE FUNCTIONAL DESIGN

3.8 Use of gestures

One of the goals of this project is to provide a straightforward, flexible and also reli-

able way of writing and editing mathematics in a computer. The final system has to

allow fluidity of thought and easy editing/manipulation of handwritten mathematics.

For that, it should be easy to trigger editing tasks and manipulations. Using toolbar

buttons to start these actions can distract the user from what they are doing, since their

focus will change to other areas of the screen. Also, toolbars are usually small and can

be difficult to target with a pen. To avoid distractions, the actions that are often used

should be triggered in a straightforward way, preferably in the area that the user is edit-

ing. For that, gestures can be useful. Gestures are specific pen motions that can initiate

commands. For instance, a quick circle (see figure 3.1) may select the ink situated inside

it. Gestures are usually inked in the area of the screen that the user is editing. Thus,

gestures can help with keeping the user focused and should be used to help achieve a

system that interferes as little as possible with the user’s thought.

Decision:

• Gestures should be used to trigger basic editing tasks and structured ma-

nipulations.

Figure 3.1: Circle gesture

3.8.1 Gestures to trigger actions

The system should support the user when performing certain mathematical operations.

Those operations will be triggered by the user and the user is responsible for the cor-

rectness of applying them. The gain for the user is that they do not have to determine

themselves the result of applying an operation and errors are more difficult to make.

This can improve the simplicity and accuracy of mathematical calculations. As men-

tioned above, to make things as simple as possible, gestures should be used to trigger

32



CHAPTER 3: THE FUNCTIONAL DESIGN

some rules that are used often. An example of such a rule is the distributivity rule.

Consider the distributivity of Boolean disjunction through conjunction, that is:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) .

If the user wants to apply the distributivity rule to an expression of the shape of the left-

hand side of the rule, they should have the possibility to do that with the support of the

library. A gesture will indicate that the rule should be applied. Associations between

gestures and rules can be customised by the user. By default, the system will provide,

for each task, gestures that seem intuitive for that particular task. For example, two

candidate gestures for applying the distributivity rule are the following:

• draw a semi-circle starting at the ∨ symbol and ending on the ∧ symbol (figure

3.2);

• select the ∨ symbol, drag it and drop it over the ∧ symbol (figure 3.3).

(a) Expression (b) Gesture (c) Result

Figure 3.2: Using the semi-circle gesture to apply a rule

(a) Expression (b) Gesture (c) Result

Figure 3.3: Using the drag-and-drop gesture to apply a rule

Both gestures match the visual idea that one operator will be propagated over the other,

making then natural candidates to trigger the distributivity rule.

However, one should be careful with the use of gestures since too many gestures can

interfere with each other and with the user. For instance, the circle gesture mentioned

33



CHAPTER 3: THE FUNCTIONAL DESIGN

above can interfere with the writing of number zero or of the character ’o’. Another

example is that the semi-circle gesture may interfere with drag-and-drop. If drag-and-

drop is done as it is shown in figure 3.3, the pen follows the same path that is done to

write the semi-circle. That can trigger the semi-circle action instead of the drag-and-

drop. Thus, care should to be taken to make sure that actions are not inadvertently

triggered.

To conclude, it has to be said that, in general, inking environments do not have the

notion of cursor (as in typesetting environments). So, another reason why gestures

should be supported is that they can be used to indicate the location where a certain

action should occur.

3.9 System versus user in control

Many tools try to take control of what the user is doing. Tools can, for instance, show to

the user that certain mathematical manipulations are not correct. But given that there

are many different notations to represent the same mathematical result and that new

notations and meanings can be created at any time, it is best that the system does not

try to impose any mathematical definitions. For these reasons, the system should only

have the general knowledge of mathematical structures and the knowledge of how to

apply rules given a structure. As long as the rule can be applied to a certain structure, it

will be applied without interpretation of the expression and without making sure that

the step is valid. Assuring the validity of the steps has to be the user’s responsibility.

Also, for the same reason, the system should allow the user to create new operators

and redefine the operator’s properties (kind and precedence).

As mentioned above, gestures are used for editing operations and to trigger actions.

Gestures are usually easy and straightforward to use, but for some users, some ges-

tures can seem less natural. For this reason, the relation between gestures and actions

should not be fixed. The user should be able to associate gestures with certain actions

in the way they find best suited for their needs. The gestures used by default should

be defined taking into account interferences between gestures and also the ease of use.

From the moment that the user starts changing the default definitions, it is their re-

sponsibility to detect and control interferences between gestures.

Finally, the user should be able to edit recognition results. Some systems assume that

the recogniser is perfect and that the returning result is the one to be used. However, as

34



CHAPTER 3: THE FUNCTIONAL DESIGN

this is clearly not the case in mathematics recognition, the user should be free to choose

the appropriate recognition result from the options that the recogniser returns or, in

case no result matches the input, the user should be able to input the correct recogni-

tion.

Decision:

• The user should be in control and not the system:

– it is the user’s responsibility to check semantic validity;

– it should be possible to redefine the gestures associated with certain

actions;

– it should be possible to create new operators and redefine their prop-

erties;

– it should be possible to edit recognition results.

3.10 Combined writing of mathematics and text

To present mathematics effectively, it is necessary to present the mathematical results

accompanied by some explanation. For that, the combined writing of text and math-

ematics is needed. As this system aims at presenting mathematics, it is desirable to

support both handwritten mathematics and text, but it is not crucial to provide special

facilities to deal with text (like the ones available in standard text editors). Text can be

seen just as ink (like a drawing) that can be written and deleted as desired.

Decision:

• The system should allow combined writing of mathematics and text, but

it is not necessary to provide structured editing of text.

35



CHAPTER 4

The technical design

In this chapter, the technical design of the MST library is presented. In the next few

sections, the most important features are described and details of their implementation

are given.

The final product of this project is available in the form of a C# class library oriented

for Tablet PCs. This library was created using Microsoft Visual Studio 2008[vis12] and

it makes extensive use of the Microsoft Tablet PC platform SDK v1.7 APIs[tab12]. This

SDK is the standard development kit for producing ink- and pen-enabled Microsoft

Windows applications.

4.1 Architecture

The general architecture of the system is depicted in figure 4.1. In this diagram, all

the actions that are triggered by a specific action are written in the same colour. The

user interface allows the user to input handwritten text and mathematics, and manipu-

late the mathematical expressions. First, the input is sent to the strokes handler which

divides the ink into collections of strokes, each representing a character. The divided

strokes are then passed on to a character recogniser1 which provides, for each symbol,

a set of recognition results. Each result is a textual representation of the handwritten

expression. One of the recognition results is then selected by the user as the correct one.

After the selection of one recognition result, the structure that represents the handwrit-

ten expression is created. That is the job of the parser. If the recognition result is a

well-written expression, then it will create an internal representation of the input and

1In this thesis, we use the terms character and symbol interchangeably.

36



CHAPTER 4: THE TECHNICAL DESIGN

User Interface

Character 
Recogniser

Internal 
Structure

Ink

Recognition 
Results

Ready For Structure 
     Manipulation

     Structure 
Manipulation

Result

Parser

Structure
Updater 

Strokes 
Handler

Strokes Divided 
by Characters

Figure 4.1: System architecture

allow the user to manipulate the expression. Every time the user manipulates the ex-

pression, the structure updater will update its structure (it will modify the expression’s

tree according to the manipulation that was done).

It should be noted, however, that the user interface presented in the diagram is not part

of the MST library. It is part of some program that uses this library and knows how to

communicate with it — as will become clearer in the remainder of this thesis.

4.2 Extendability and reusability

As the use of Tablet PCs and the recognition of handwriting have attracted much atten-

tion in the last few years, things tend to change rapidly. Thus, a system that is created

today can become outdated in just a few years time. To avoid that, one of the goals of

this project is to provide an extendable library. One of the main concerns is that new

recognisers with much better recognition capabilities can appear; in that case it would

be desirable to use the new ones instead of a fixed recogniser. For this reason, in the

architecture diagram presented in figure 4.1, the character recogniser and the parser do

not form an unique block. The idea is to allow the connection to the system of new

recognisers and new parsers, or even a block that can work both as a recogniser and as

a parser. For that, this library was created to accommodate change by the introduction

of the so-called strategy pattern [GHJV95]. The strategy pattern is a design pattern, that is,

it is a general reusable solution to a commonly occurring problem in software design.

37



CHAPTER 4: THE TECHNICAL DESIGN

Design patterns describe problems which occur often, and describe a simple and elegant

solution for those problems in a way that they can be reused over and over again. There

are many types of design patterns. For a detailed catalogue of these, the book [GHJV95]

is recommended.

The goal of the strategy pattern is to define a family of algorithms, encapsulate each

one, and make them interchangeable. This pattern is useful in applications that require

dynamic swap of algorithms (in this case, several recognisers can be used with the

library), but the way it is defined is also useful to easily connect new recognisers and

parsers to the library. In figure 4.2, a UML diagram of the strategy pattern as it is used

in this system is presented.

<<interface>>
MSTRecognize

mstRecognize(s : Strokes)

Context

ContextInterface()

ConcreteRecognizerB

mstRecognize(s : Strokes)

ConcreteRecognizerA

mstRecognize(s : Strokes)

<<interface>>
MSTParser

mstCreateStructure(reco : String) ConcreteParserB

mstCreateStructure(reco : String)

ConcreteParserA

mstCreateStructure(reco : String)

Figure 4.2: Usage of the Strategy pattern

To add a new recogniser, the interface MSTRecognize has to be implemented by that

recogniser. This interface defines a single method mstRecognize which is used to

recognise mathematics. Similarly, to integrate a new parser with the tool, the inter-

face MSTParser has to be implemented. The method mstCreateStructure is used for

the parsing of the mathematical expressions.

The use of the strategy pattern makes it not only easy to integrate new recognisers and

parsers, but it also allows the use of more than one recogniser in runtime.

4.2.1 Reusability

During the development of the MST library, special attention was given to its reusabil-

ity. It is desirable that the system can be used within other tools, that it can be adapted

38



CHAPTER 4: THE TECHNICAL DESIGN

to new developments, and that it can serve as a base for the development of new fea-

tures. For these reasons, the system is made available as a library and it was created

in a modular way — that is, it is organised in modules, each one supporting a main

feature of the system. The library is made up of four main modules2 , namely, the mod-

ules Recognisers, Parsers, Structure and Gestures. As their names indicate, the module

Recognisers contains the recognition facilities, Parsers contains all the code for the pars-

ing of expressions, Structure contains all the definitions for mathematical structures and

the methods that manipulate them, and, finally, the module Gestures gathers all the fa-

cilities that deal with gestures. In the remainder of this chapter, many of the features

included in these modules are detailed. For details on how to use these modules within

other tools, chapter 5 is recommended.

4.3 Handling of strokes

In order to create structure for mathematical expressions, the mathematical handwrit-

ten input has to be recognised. Given that the library assumes the use of a symbol

recogniser, the strokes have to be divided in collections of strokes, each collection con-

taining all the strokes that form a symbol. Assuming that symbols are composed only

by strokes that intersect, an approach to the division of the strokes into collections of

strokes is based on determining recursively which strokes’ bounding boxes intersect

which. Every group of strokes that are part of the intersection’s closure for one initial

stroke, are part of the same collection. For example, consider the character ‘H’ in figure

4.3, which composed by three strokes: s1, s2 and s3.

Figure 4.3: Handwritten character ‘H’

To determine the strokes that make part of this character, the following algorithm can

be followed:

2Note that, however, there are other auxiliary modules. For example, there is a module called IO which

allows the writing of markup code to represent mathematical expressions (its features are described in

section 4.10). There is also a module Stencils, which provides features for creating handwritten templates

(for more details see section 4.11.1).

39



CHAPTER 4: THE TECHNICAL DESIGN

1. start a collection (result) with the stroke s1;

2. find all the strokes whose bounding boxes intersect the bounding box of s1: s2 is

found;

3. result does not contain s2: add s2 to the collection;

4. find all the strokes whose bounding boxes intersect the bounding box of s2: s1

and s3 are found;

5. result contains s1 but does not contain s3: add s3 to the collection;

6. find all the strokes whose bounding boxes intersect the bounding box of s3: s2 is

found;

7. result already contains s2: stop the search;

This strategy works well when dealing with characters where all their strokes touch

each other. However, for characters such as ‘i’, the above strategy ends up returning

two collections: one with each stroke. That is no good since they are sent to the recog-

niser as two different characters, and thus they are recognised separately which will

never return the character ‘i’.

To overcome this problem, the algorithm can be improved by searching for the intersec-

tions by using extended bounding boxes. For each stroke, when trying to find which

other strokes intersect its bounding box, the bounding box used is extended up and

down to the size of the line that the stroke in question is part of. Figure 4.4 illustrates

the extension for the case where an ‘i’ is being processed. The blue rectangle corre-

sponds to the bounding box that contains the whole line. The pink one is the bounding

box of the main stroke that forms the ‘i’ character. Using only this bounding box would

let the dot that is part of the character outside the collection. However, to correct that,

the bounding box is extended with the red rectangle, that is, the new bounding that is

going to be used is the bounding box composed by both the pink and the red rectan-

gles. That corresponds to changing the height of the pink bounding box to the height

of the line (the blue rectangle) and change the y-coordinate to be the y-coordinate of

the line. The algorithm that extends the bounding boxes is the one used in the MST

library.

It should be noted, however, that in the current implementation, only strokes that in-

tersect, or that are situated above or below each other, are considered part of the same

40



CHAPTER 4: THE TECHNICAL DESIGN

Figure 4.4: Extending the bounding box of ‘i’

character. For example, the system fails to divide correctly the strokes that form the as-

signment symbol (:=), since the strokes of the colon do not intersect the strokes of the

equals sign. Users need to have this in mind when writing input that will be consumed

by the library.

Before being divided into collections of strokes using the above algorithm, the strokes

being processed need to be divided by lines. Microsoft Tablet PC API provides the

Ink.Divider class that allows the division of the ink into drawings, lines, paragraphs

and segments of recognition. Initially, the MST library performed line division using

the Ink.Divider class but the results were very unreliable. For this reason, a new di-

vision of the ink by lines was implemented. The new division, although not perfect,

gives the correct result more often than the Divider for the kind of mathematics that this

work supports (please see section 6.4 for more details). The algorithm for this division

is algorithm 1.

Each iteration of the loop adds a line to the array lines and removes it from the argu-

ment strokes. Because the size of strokes is decreased at each iteration, the algorithm

terminates. The method sortByY sorts a collection of strokes in ascending order of their

y-coordinate. Method determineIntersections determines which strokes intersect a given

rectangle (in this case, the rectangles used are lineBB and the bounding box of firstLine).

The repeated call to determineIntersections is used to improve accuracy: by calling the

function again with the bounding box obtained in the previous iteration (lineBB), the

algorithm may expand the line to contain strokes that were not initially intersected. To

better appreciate how the algorithm improves, consider the input "2 ; g"; if the repeated

call to determineIntersections is not used, firstLine becomes "2 . g".

41



CHAPTER 4: THE TECHNICAL DESIGN

Algorithm 1 GetLines: Dividing strokes by lines

Require: Assume that the stroke with the smallest y-coordinate is part of the first line;

lines := Empty;

while strokes 6= Empty do

sorted := sortByY(strokes);

firstLine := sorted.First;

repeat

nStrokes := firstLine.Count;

lineBB := newRectangle(strokes.X, strokes.Y, strokes.Width, firstLine.Height);

firstLine := determineIntersections(lineBB, strokes);

until nStrokes == firstLine.Count;

strokes.Remove(firstLine);

lines.Add(firstLine);

end while

return lines

4.4 Character recogniser

Although it is possible to change the recogniser that is used with the library (as de-

scribed in section 4.2), the recogniser that was used during the development of the li-

brary was a symbol recogniser developed by Maplesoft [map12]. This recogniser is not

the ideal for this task since it does not take into account any context of the expressions

and solely recognises each symbol individually. To obtain good results, the recognition

should be done with information about the context in which the individual symbols

are being written. For that, probabilistic models can be used. A short description of

these models, is presented in section 4.4.1.

As the Maplesoft’s recogniser is written in JAVA (and this project is written in C#), a

script is used to make a system call to run the recogniser and send to it the collections

of strokes3

After the division of the strokes into single characters, the collections of strokes are

3There is also a version that uses Maplesoft’s recognition through a DLL. There were many difficulties

in creating the DLL file — mainly because of the lack of knowledge of how the recogniser is written —

but after many attempts, a DLL was created and seems to be faster than the use of system calls. However,

the results do not seem as accurate.

42



CHAPTER 4: THE TECHNICAL DESIGN

sent one by one to the recogniser. For each character, the recogniser returns a list of

recognition results. The MST library combines these lists to produce a list of recognition

results for the entire expression. These results are then shown to the user using a menu

similar the one presented in figure 4.5.

Figure 4.5: Context menu with recognition results

In this example, the results that were returned for the character ’a’ were ’a’, ’q’, ’G’,

’θ’, ’C’ and ’ǫ’, in this exact order. That is why these are the results that appear in the

first six results presented for the whole expression (similarly, the first six results for ’+’

and ’b’ are the ones shown in the menu). Other strategies to combine the results can be

implemented.

The user is presented with a menu like the one shown in figure 4.5 so that they can

choose the correct recognition. If the correct recognition is one of the choices presented,

then the user has to select the correct one. If the correct result does not appear in the

menu, then the ’Edit’ button should be clicked and the correct recognition should be

written manually by the user.

After this step, the string that represents the input is obtained and can be parsed to

create its structure.

4.4.1 Bayesian network models

In the handwriting recognition field, it is common to use probabilistic models to embed

the information needed for the recognition and base the recognition results on proba-

bilities. In this project, a recogniser for individual characters is used together with an

ANTLR parser to create the structure for the set of symbols that were recognised. How-

ever, it might happen that an individual symbol is recognised wrongly. As an example,

a ‘+’ can be recognised as a ‘t’. So, if one writes ‘1 + 2’ and the characters ‘1’, ‘t’ and ‘2’

43



CHAPTER 4: THE TECHNICAL DESIGN

are sent to the parser, the parser does not know how to behave since there is no rule for

this expression (in a mathematical context). However, if we had a probabilistic model

to help us with the recognition, it would know that between two numbers it is more

likely to have an operator than a letter. That is why it was considered using probabilis-

tic models in this project to improve the recognition results and to make the recognition

process simpler for the user. In this context, probabilistic graphical models were consid-

ered. These models were used with success, for instance, in [Htw07] for recognition

of handwritten Pitman’s shorthand. A probabilistic graphical model is a graph that rep-

resents probability distributions and Bayesian networks are one of the most important

classes of graphical models. These networks are directed acyclic graphs in which the

nodes represent variables and the arrows represent causal relationships between the

variables — they represent probabilistic dependencies between the variables. An arc

from a node A to a node B indicates that A ‘causes’ B. Bayesian Networks are so called

because they use Baye’s rule for probabilistic inference [Mur98, Pea85, Pea88]. Using

these networks, it is possible to determine which symbol is more likely to follow a

given symbol or set of symbols. To use this in this project, the graph structure and the

parameters of the model would have to be defined (e.g. the conditional probability

distribution at each node).

There are algorithms to perform inference and learning in Bayesian networks which

would be very useful to improve the recognition results. However, the recognition of

handwriting was not planned as a task of this project and to implement a Bayesian net-

work would take considerable amount of time. Thus, this possibility was abandoned

and left for a future improvement of the library.

In the MST library, to avoid errors, the user has always to verify if the recognition

returned is correct, and edit it if that is not the case. The string with the recognition

result can only be sent to the parser after a correct recognition result is obtained. With

a Bayesian network this step could possibly be avoided, making the tool much easier

to use.

4.5 Parsing recognition results

After a recognition result is obtained, it is parsed by a parser which was generated by

ANTLR [ant12]. Given a grammatical description, ANTLR generates a parser. More

specifically, it generates a lexer and a parser: the lexer takes a stream of characters and

44



CHAPTER 4: THE TECHNICAL DESIGN

divides the stream into tokens according to pre-set rules; the parser reads the tokens

and interprets them according to its rules. In this thesis, when the term parser is used,

it refers to the set of generated files, that is, to the lexer and the parser. The expressions

“parser rule” or “lexer rules” are used to refer to the rules defined in the grammar file

for defining, respectively, the generated parser and lexer.

To parse a given recognition result, the string that is sent to the parser contains the

recognition result together with the information of the bounding boxes of the strokes

that compose each character. An example of these strings is the following:

"4366 3168 3518 949 a 4366 3541 1002 576 + 6031 3496 689 474 b 7323 3168 561 835"

This string represents the expression a + b. The first four values correspond to the x

and y coordinates, and to the width and height of the bounding box that contains all

the strokes that form this expression. After this, comes the character ’a’ and the values

that represent the bounding box that contains all the strokes that form this character.

The same applies to the characters ’+’ and ’b’. The parser reads this string and creates

a tree that represents this expression.

As one of the objectives of this project is to provide a library that can be adapted as

much as possible to the user’s needs, and given that in mathematics there are many

different notations for the same operators and new operators can be created at anytime,

this library allows the addition and redefinition of operators in runtime. For that, an

operator editor (see figure 4.6) is provided and the parser was created as a dynamic

parser that parses any new symbols that the users add to the operators list.

Figure 4.6: Operator Editor

45



CHAPTER 4: THE TECHNICAL DESIGN

The editor provides an interface to add new operators to the system and change their

properties (kind and priority). In figure 4.6, the user is adding an operator named lcd

with kind infix and priority 3.

To make the parsing dynamic in terms of the operators that it supports, specific fea-

tures of ANTLR are used. More specifically, ANTLR allows the change of the type of a

lexer token dynamically. The following lines illustrate this feature:

ID : ( ’ a ’ . . ’ z ’ | ’A’ . . ’ Z’ ) +

{ i f ( i sBOperator ( $ t e x t ) ) $type=DYNAMICBOP;

else i f ( isPREOperator ( $ t e x t ) ) $type=DYNAMICPRE;

else i f ( isPOSTOperator ( $ t e x t ) ) $type=DYNAMICPOST; } ;

UNICODE : ’\ u0000 ’ . . ’ \ uFFFE ’

{ i f ( i sBOperator ( $ t e x t ) ) $type=DYNAMICBOP;

else i f ( isPREOperator ( $ t e x t ) ) $type=DYNAMICPRE;

else i f ( isPOSTOperator ( $ t e x t ) ) $type=DYNAMICPOST; } ;

fragment DYNAMICBOP: ;

fragment DYNAMICPRE: ;

fragment DYNAMICPOST: ;

ID and UNICODE define tokens that contain, respectively, one or more characters be-

tween ‘a’ and ‘z’ (upper and lower case), and all the characters in the unicode range

from ‘0’ and ‘FFFE’. The “if .. else” statement in each of these rules checks whether

the input to be consumed is a binary operator (isBOperator), a prefix operator (isPRE-

Operator), or postfix operator (isPOSTOperator) and modifies its type accordingly (to

DYNAMICBOP, DYNAMICPRE or DYNAMICPOST). The lines that start with the word fragment

instruct ANTLR that the rule is only used as part of another lexer rule. In this case,

the three fragments defined are used as part of the lexer rules ID and UNICODE. This

approach allows to determine if, in the current context, a token is an operator. For ex-

ample, the isBOperator method is defined as follows:

46



CHAPTER 4: THE TECHNICAL DESIGN

p riv ate Hashtable opInfo = MST. MSTVariables . OpToOpInfo ;

Boolean isBOperator ( S t r i n g s )

{

i f ( opInfo . ContainsKey ( s ) )

{

i f ( ( ( OperatorInfo ) opInfo [ s ] ) . Kind < 3)

{

return true ;

}

else

{

return f a l s e ;

}

}

else

{

return f a l s e ;

}

}

Three types of binary operators are considered: infix (associative), left-associative and

right-associative. These types are identified by the number 0, 1 and 2, respectively. The

methods isPREOperator and isPOSOperator are defined very similarly, changing only

the kind involved in the test — the kind for prefix operators is 3 and for postfix is 4.

The OpToOpInfo that appears in the code is a global variable defined in the system in the

MSTVariables class. This class is used to define all the system variables. The OpToOpInfo

is a Hashtable that associates operators (string) with an object of type OperatorInfo. The

OperatorInfo class has the following definition (shown partially):

public c l a s s OperatorInfo

{ p riv ate i n t precedence , kind ;

public OperatorInfo ( i n t prec , i n t k )

{

t h i s . precedence = prec ;

t h i s . kind = k ;

}

( . . . )

47



CHAPTER 4: THE TECHNICAL DESIGN

Thus, an OperatorInfo can be seen as a pair that holds the precedence (or priority) and

the kind of an operator.

Parser rules: The start rule of the parser is complete_expression which merely states

that the input should be of the form x-coordinate (x), y-coordinate (y), width (w) and

height (h) followed by an expression (e). Both the complete_expression and the expression

rule are defined as follows4:

complete_express ion :

x=INT y=INT w=INT h=INT e=ex pr ess ion EOF ;

ex pr ess ion r e tur ns [Node l o c a l ] :

( l e f t =pr imar y _fac tor ;

)

( b=DYNAMICBOP x=INT y=INT w=INT h=INT

r i g h t=pr imar y _fac tor ;

| b=DYNAMICBOP x=INT y=INT w=INT h=INT

( ’\U23A8 ’ | ’ ht ’ ) x1=INT y1=INT w1=INT h1=INT e=ex pr ess ion

( ’\U23AC’ | ’ th ’ ) x2=INT y2=INT w2=INT h2=INT

r i g h t=pr imar y _fac tor ;

| r i g h t = pr imar y _fac tor ;

)∗

;

As the code above shows, an expression is composed by:

• a primary_factor;

• or, a primary_factor followed by one or more occurrences of:

– a binary operator and another primary_factor;

– or, a binary operator followed by an expression between the tokens ’\U23A8’

(or ’ht’) and ’\U23AC’ (or ’th’) which, in turn, is followed by another pri-

mary_factor;

– or, another primary_factor (this is the case where there is an invisible operator

between two primary_factors);

4The C# code was removed from the rules to make it more simple to read the rule’s definitions.

48



CHAPTER 4: THE TECHNICAL DESIGN

The case where an operator is followed by an expression between the tokens ’\U23A8’

(or ’ht’) and ’\U23AC’ (or ’th’) is used for writing calculational proofs. The tokens are

used to delimit the hints. Although hints in calculational proofs are usually presented

between curly brackets as in

A

= { hint }

B

the current system is using the special keywords ’\U23A8’ (or ’ht’) and ’\U23AC’ (or

’th’). This restriction comes from the fact that invisible operators and expressions de-

limited by curly brackets are permitted. Since invisible operators have the lowest prece-

dence, if the curly brackets were used to delimit hints, the expression A = {hint}B

would be read as (A = {hint})B since it would assume an invisible operator between

B and the rest of the expression. For this reason, a different type of brackets has to be

used to delimit hints. The unicode characters chosen are very similar to curly brackets,

as figure 4.7 shows. The ’ht’ and ’th’ tokens are provided since they are ASCII and, in

case the recognition result has to be edited, it is easier to input these delimiters than the

unicode versions.

(a) (b)

Figure 4.7: Brackets used for hints

The primary_factor rule used above is defined as:

pr imar y _fac tor r e tur ns [Node l o c a l ] :

pre=DYNAMICPRE x=INT y=INT w=INT h=INT pe=primary_expression ;

| pe=primary_express ion f = f a c t o r ;

A primary_factor is either a prefix operator followed by a primary_expression or a pri-

mary_expression followed by a factor. As can be seen from its definition, a factor is either

49



CHAPTER 4: THE TECHNICAL DESIGN

a postfix operator or the empty string:

f a c t o r r e tur ns [Node l o c a l ] :

post=DYNAMICPOST x=INT y=INT w=INT h=INT ;

| ;

Finally, the primary_expression defines the parsing of identifiers, unicode characters,

strings, algorithms, expressions between brackets and quantifiers. The quantifiers sup-

ported are of the form:

〈
⊕

bv : range : term〉.

This notation is know as the Eindhoven quantifier notation. There are five components

to the notation. The first component is the quantifier
⊕

. The second component are

the bound variables bv. The third component is the range of the bound variables. The

range is a Boolean-valued expression that determines a set of values of the bound vari-

ables for which the expression is true. The fourth component is the term, which is an

expression that will be evaluated for each value of the bound variables; the way the

results are put together is determine by the quantifier (for instance, in a summation, all

the results are added). For more details on this notation, [Bac03] is recommended.

4.5.1 Data structures for mathematical expressions

As already mentioned before, this library allows structured manipulation of mathe-

matical expressions. This is possible, because the parser creates a data structure that

represents the mathematical expressions. This section describe the data structure that

is used.

The first data structure that was considered was a binary tree structure, because their

use is very simple and they are widely known. However, these trees are not suit-

able for all kinds of mathematical expressions as explained in Verhoeven’s thesis on

Math∫pad [Ver00]. The mathematical expressions that are supported by this library are

supported by the Math∫pad system. So, some of the results presented in Verhoeven’s

thesis are useful for this project. In the Math∫pad project, Richard Verhoeven and Olaf

Weber have used rose trees [ros12] to represent mathematical expressions. A rose tree

is a tree in which the nodes have a list of subnodes (and not just two subnodes as in

50



CHAPTER 4: THE TECHNICAL DESIGN

binary trees). The number of subnodes is not restricted which is very useful to store

the expressions. Using these trees, an expression can be divided into sub-expressions

which will be stored as subnodes of the whole expression.

For the same reasons that rose trees are used in the Math∫pad project, they are also used

for storing mathematical expressions in the MST library. However, the information

stored in the nodes of the trees and the way in which the trees are created and searched

are different from what is done in Math∫pad.

Each Node of the rose trees that are used to represent mathematical expressions con-

tains the following information:

public c l a s s Node

{

Rectangle boundingBox ;

char reco ;

i n t kind ;

Parent parent ;

Node f i r s t ;

Node l a s t ;

Node r i g h t ;

Node l e f t ;

. . .

}

The first two variables are related with the handwritten expression:

• boundingBox: holds the smallest rectangle that contains the strokes to which this

node refers to; a Rectangle is an object that is composed by four elements: x-

coordinate and y-coordinate of the top left corner, plus the height and width of

the rectangle;

• reco: holds the recognition result of the strokes that this node refers to.

The other variables are concerned with the mathematical structure:

• kind: holds one of the following values and represents the type of the expression

that is being held:

51



CHAPTER 4: THE TECHNICAL DESIGN

i n t ROOT = 0 ;

i n t EXPR = 1 ;

i n t OP = 2 ; / / I n c l u d e s I n f i x , P r e f i x and P o s t f i x , L e f t and Right

i n t ID = 3 ;

i n t TEXT = 4 ;

i n t BRACKET = 5 ;

i n t SEPARATOR = 6 ;

i n t OP_PREFIX = 7 ; / / c u r r e n t l y unused

i n t OP_POSTFIX = 8 ; / / c u r r e n t l y unused

i n t OP_NONE = 9 ;

• parent: holds the information that each node needs to know about its parent node.

The class Parent has the following instance variables:

public c l a s s Parent

{

Node parent ;

i n t p o s i t i o n ;

. . .

}

For a given node, the parent variable holds the parent node, and the position vari-

able holds its position in relation to its parent. For instance, given the expression

a+b the tree that represents it is as follows:

+ b

Expr

a

Figure 4.8: Rose tree that represents the expression a+b

The parent of ‘a’,‘+’ and ‘b’ is the node Expr and their position in relation to the

parent is 1, 2 and 3, respectively. Currently, the position information is not being

used, but it was included since it was supposed to be used on the writing of text

intercalated with mathematical expressions. However, the current solution has

a limited support for combined writing of mathematics and text and it does not

need this information (more details are presented in section 4.5.2). Nevertheless,

52



CHAPTER 4: THE TECHNICAL DESIGN

the position information is available so that it can be used to improve the writing

of text.

• first, last, right, left: hold, respectively, the first child of the node, the last child, the

node that stands on its right, and the node that stands on its left.

It should be noted that the bounding boxes that are held in the nodes are using ink

space coordinates. The Tablet PC Platform has (at least) two coordinate systems: pixel

coordinates (or device coordinates) and ink coordinates. The difference between them

is that ink coordinates are much denser than pixel coordinates, since digitizers have

a much higher resolution than displays. It is important to use ink space coordinates

because the structure relies on the position of the ink within the Ink object. If pixel

coordinates were used, every time a resize of the window was done, the coordinates

would change (because their coordinates in relation to the display would change) and

either the whole structure would have to be updated every time this happened (which

would be costly in terms of efficiency) or there would be a mismatch between the struc-

ture and the screen. Ink objects and Stroke objects use the HIMETRIC coordinate sys-

tem. A HIMETRIC unit represents 0.01mm, where the measurement is derived from

the screen’s current DPI (dots per inch). The origin of the coordinate space is the point

(0,0) and it represents the upper-left corner of the space. The consistency between the

Ink object and the display is achieved through the Renderer class. To draw a Stroke ob-

ject to the screen, a Renderer object obtains the ink coordinates from the Stroke object,

transforms them, converts them into pixels, and finally renders that data on the screen.

Figure 4.9 illustrates the interaction between these entities. For more details see [JS03].

It should be noted that, in general, users of the MST library do not need to deal with

these transformations as these are done automatically.

Now, to illustrate the way trees are created, consider the following expression:

a + b + c×d×e + f×g .

A representation of the structure that is created for this expression is presented in figure

4.10.

As the figure shows, the operators that have the same precedence are all in the same

level of the tree. Different levels express different precedences. For instance, the multi-

plication is in a higher level than addition because its precedence is higher.

This tree structure is convenient for the structured selection, which will be detailed

53



CHAPTER 4: THE TECHNICAL DESIGN

Transform

Renderer

Ink object Viewport

Application

Ink 
coordinates

Transformed 
ink coordinates

Pixels

Figure 4.9: How a Renderer object draws ink strokes to a viewport

E x p r

E x p rE x p ra

xc

++ b +

exd gxf

Figure 4.10: Rose tree that represents the expression a + b + c×d×e + f × g

54



CHAPTER 4: THE TECHNICAL DESIGN

in section 4.7, and for applying algebraic rules. For instance, for the sub-expression

b + c×d×e of the expression presented above, if one applies a swap (symmetry) to the

addition operation, the update of the structure is very simple. It consists of simply

swapping the positions of the node b and the node Expr, as shown in figure 4.11.

E x p r

xc

+b

exd

E x p r

xc

+ b

exd

S w a p

Figure 4.11: Swap operation

The tree structure that is created by the library contains some nodes denoted with Expr.

These are Expression type nodes, meaning that they are the root of an expression (or sub-

expression). The Expression type nodes are useful for making the search more efficient.

These nodes contain the bounding box of the expression that they hold, which avoids

searching all the nodes of the expression individually to find a certain node. To clarify

this, consider that a tap is done over an element of a mathematical expression. To find

out which node holds that element, the node that contains the point where the tap was

done has to be found. With the use of the Expression nodes, the search function does

not need to check all the nodes of each expression in the document. It just needs to find

out the expression that contains that point, and then search inside that expression. To

find the expression that contains the point, the only operation that needs to be done is

to check whether that point is inside the bounding box of the current expression. The

information of the bounding box is in the Expression5 node, so there is no need to walk

through the expression’s tree to find out the expression that contains the point. When

the expression is finally found, these Expression nodes are also useful. For instance, in

the example presented in figure 4.10, if a tap is done on the last addition symbol, these

are the only checks that need to be done:

• Check which node (First or Last) is nearer the point where the tap is done: the

result is Last;

5It should be noted that there are two types of what is referred to, in this thesis, as Expression nodes.

The nodes that are the root of an expression, which have kind ROOT, and the ones in the inner levels of

the trees, which have kind EXPR. The two types carry the same information with exception of the kind

value. This distinction is needed to determine the beginning of each expression.

55



CHAPTER 4: THE TECHNICAL DESIGN

• Check whether the point is inside the last Expr node: the result is false; move to

the Left node;

• Check whether the point is inside the last + node: the result is true and this is an

operator node; thus, the node was found.

In this last example, when the last addition operator is tapped, it is mentioned that

the search starts from the last Expr node. This happens because the algorithm starts

by checking which of the first and last children of the root is nearer to the point being

searched. It then proceeds with the search through the nearest node. In the case above,

the node that is nearer to the point is the last one. This search for the nearest node is

done to improve the efficiency of the search function. More details about the search

functionality are given in section 4.7.1.

4.5.2 Creation of structured trees

To create the trees that represent mathematical expressions, the precedence and the

kind of each operator involved have to be taken into consideration. To introduce

the algorithm responsible for that, consider the creation of the tree for the expression

a ⊕ b ⊖ c ⊖ d ⊗ g, where all the operators are binary, have the same precedence and

their kinds are as follows:

• ⊕: infix;

• ⊖: right;

• ⊗: left;

The algorithm proceeds as follows. First, in the parsing process, the expression is di-

vided in two lists, one that contains the expressions (which in this case is composed of

variables only) and another that contains the operators:

Expressions: [a, b, c, d, g]

Operators: [⊕, ⊖, ⊖, ⊗]

Next, the list of operators is processed by a method called indexesHighestPriority. This

method creates a list of the form [Infix, Left and Right]. Infix is a list that contains the

indexes of all the operators that are infix. Left and Right is a list containing the indexes

56



CHAPTER 4: THE TECHNICAL DESIGN

(in ascending order) of the left and right operators; this list is, in fact, a list of lists con-

taining singleton lists for left operators, and non-singleton lists for right operators that

are contiguous in the list of operators. Continuing with the example, the list returned

by indexesHighestPriority is the following:

[[0], [[1,2],[3]]]

It should be noted that if there were operators with highest precedence, those would be

processed first and, for each precedence, one list similar to the above would be created.

The next step is to process first the left and right operators (LR list). The LR list is pro-

cessed from left to right but, for each list inside it, the processing occurs from right to

left. This has no effect on lists of left operators since they are singleton. However, for

lists of more than one right operator it has the desired effect of processing the right-

most operators first. So, processing the LR list from left to right, [1, 2] is processed first.

Next, this list is processed from right to left, thus the operator in the index 2 is the first

to be processed. Now, looking at the list of operators, that corresponds to the second

⊖. The operands of this operator should be retrieved, that is c and d (positions index

and index+1). With this information, the first node can be created using the method

joinNodes which returns a node, say n1. Next, the lists of expressions and operators

are reorganised by replacing the operands c and d by the node n1, and removing the

second ⊖ from the list of operators:

Expressions: [a, b, n1, g]

Operators: [⊕, ⊖, ⊗]

The indexesHighestPriority is called again with the new lists, returning the following

result:

[[0], [[1],[2]]]

Following the same procedure detailed above, the following sequence of lists is ob-

tained (node n2 and n3 created by the method joinNodes):

57



CHAPTER 4: THE TECHNICAL DESIGN

Expressions: [a, n2, g]

Operators: [⊕, ⊗]

[[0], [1]]

Expressions: [a, n3]

Operators: [⊕]

[[0]]

At this point, no more elements are left in the LR list, so the list of infix operators

should be processed. As there is only one operator, the method createInfixNodes is used

to create the node that will connect a, ⊕, and n3, and to create the root node of the

whole expression.

In this particular example, there is only one infix operator but, if the list of infix opera-

tors was, for instance, [1,2,4,5] (this type of list can appear when there are operators of

different precedences), a list of lists would be created, where each list would contain the

indexes that are contiguous (this list would be created by the method contiguousLists).

For the list [1,2,4,5] the result would be [[1,2],[4,5]]. This list would be processed from

right to left using the method createInfixNodes. For each list that this method receives, it

creates the nodes for all the indexes in the list argument, keeping the nodes in the same

level (as it should be done for infix operators). It then returns the leftmost node so

that it can be connected to the remaining nodes. This list is processed from right to left

since it does not matter the order in which infix operators are processed and, this way,

it avoids having to recalculate the lists of indexes. If the lists were processed from left

to right, the indexes would have to be updated at each step. For example, if the list [1,2]

shown above was processed first, the operators at indexes 1 and 2 and their operands

would be removed from the lists of expressions and operators. This would mean that

the list [4,5] would no longer be consistent and would have to be recalculated.

The example above was introduced to provide the reader with an intuition of how

the algorithm works. A more precise formulation of the algorithm is presented below

(Algorithm 2).

58



CHAPTER 4: THE TECHNICAL DESIGN

Algorithm 2 createPrecedenceTree: Creates a tree from the lists expressions and

operators

Require: expressions.Count>0 ∧ expressions.Count=operators.Count+1;

if expressions.Count = 1 then

return expressions.First;

end if

indexes = indexesHighestPriority(operators);

infix = indexes.First; leftRight = indexes.Second;

if leftRight.Count > 0 then

index = (leftRight.First).Last; bop = operators.index;

left = expressions.index; right = expressions.(index+1);

n1 = joinNodes(left,right,bop);

expressions.index = n1;

expressions.Remove(index+1); operators.Remove(index);

return createPrecedenceTree(expressions, operators);

else

contiguous = contiguousLists(infix);

for i=contiguous.Count - 1; to i=0 do

createInfixNodes(ref expressions, ref operators, contiguous.i);

end for

return createPrecedenceTree(expressions,operators);

end if

As it can be seen in Algorithm 2, if the LR list is non-empty, the size of the list of

expressions decreases by one. Also, if it is empty, the method createInfixNodes reduces

its size by at least one (but it never becomes empty). Consequently, the algorithm

terminates.

The discussion above was on creating structure for expressions involving only binary

operators. The above algorithm executes after the parser creates the lists of expressions

and operators. On the other hand, the creation of structure for the other types of ex-

pressions does not need these lists. For example, the following code shows how the

structure for an expression involving a prefix operator is created.

59



CHAPTER 4: THE TECHNICAL DESIGN

pre=DYNAMICPRE x=INT y=INT w=INT h=INT pe=primary_expression

{

Rectangle r = new Rectangle ( x , y ,w, h ) ;

Node preNode = new Node( r , $pre . tex t , Node . OP_PREFIX , null ,

null , null , $pe . l o c a l , null ) ;

$pe . l o c a l . L e f t = preNode ;

l o c a l = createExpressionNode ( preNode , r ) ;

}

The method createExpressionNode creates a node with kind EXPR that holds the node

given as argument, and all the nodes to its right.

Note that the strategy followed by the MST library has some limitations. For example,

when creating structure for the expression ¬a⊕b, where ¬ is a prefix operator with

lower precedence than the infix operator ⊕, the expression will be parsed as (¬a)⊕b,

which is incorrect. For these cases, the user has to bracket the expressions. Alterna-

tively, the library provides group and ungroup operations that can fix these inconsis-

tencies.

Finally, the library provides limited support for combined writing of text and mathe-

matics. So that the parser can differentiate between text and mathematics input, text

has to be delimited by special characters. In the current implementation, strings are

stored in a node containing a bounding box of all the strokes that compose the strings

(including the delimiters). Although limited, it can be useful for short annotations in

algorithms and proofs.

4.6 Spatial indexing of handwritten expressions

Many tools that provide the means to write presentations organise the presentations’

content by slides or pages. So that this type of organisation could be supported by this

library, the notion of structured slides was introduced. The idea behind the structured

slides is to keep a structure that stores all the slides and their content in a way that

provides easy access to their structure. For that, the library has a variable (named

structSlides) which is an instance of the class StructuredSlides. This class has a single

instance variable that consists of a hashtable that maps the identifiers of slides or pages

to the mathematical expressions that they hold. Moreover, this structure allows the

addition and deletion of expressions and can determine which expression is situated

60



CHAPTER 4: THE TECHNICAL DESIGN

at a given point — so that the structure of an expression can be retrieved and changed

when an action is triggered on it.

To retrieve the mathematical expressions contained in each slide, it is necessary to index

the expressions according to their position on the slide. In other words, it is necessary

to index the expressions spatially. In general, the data structure that is usually used for

indexing rectangles is the R-tree [Gut84] structure. R-trees are tree data structures that

are used for indexing multi-dimensional information; for example, the (X, Y) coordi-

nates of geographical data [rtr12]. This data structure splits space with hierarchically

nested bounding boxes (BB), that can possibly overlap. The nodes in R-trees have a

variable number of entries, up to a pre-defined maximum, and each corresponds to the

BB that holds its children. Nodes can be of two types: non-leaf nodes and leaf nodes.

Each entry within an internal (non-leaf) node contains:

• a pointer to a child node;

• and the BB that spatially bounds all the children of the child node.

Each entry of a leaf node contains the BB of the object contained in that entry and an

identifier of the object (which alternatively can be placed in the node). When nodes

get full they are split. The insertion algorithms use the BB in each node to determine in

which node an entry should be put. A new entry will go into the leaf node that requires

the least enlargement of its BB. Similarly, the searching algorithms use the BB to check

whether or not to search inside a child node, which avoids unnecessary searches inside

most nodes.

Although the MST library assumes that the users will never write overlapped expres-

sions, the current implementation of the structured slides is based on R-trees. More

specifically, instances of the class StructuredSlides map the identifiers of the slides to R-

trees — that is, there is a distinct R-tree for each slide. Each R-tree contains the structure

of all the mathematical expressions contained within the slide.

The implementation used for R-trees is the implementation developed by Aled Morris

that was ported to C# by Dror Gluska. The implementation is free software and is avail-

able at [sf12]. In this implementation, the maximum number of entries per node is 10,

and when this maximum is reached, the node is divided in two, each node containing

a minimum of five entries. The search algorithm, when given a rectangle, finds all the

entries that contain (or intersect) that rectangle. However, as the MST library assumes

that there is no overlap of rectangles, the implementation of the R-trees was changed

61



CHAPTER 4: THE TECHNICAL DESIGN

so that, when it finds a node, the search stops immediately. This change makes the

search more efficient, since it will avoid continuing the search through nodes that will

not contain the rectangle (please note that, in the case of the MST library, the rectangle

for the search consists of one point only).

This implementation was chosen because it was already available and its performance

is acceptable. Thus, there was no need to implement another library for R-trees. Also,

even though the current implementation of the MST library assumes that there are no

overlaps, there may exist tools that need to allow overlapping. In that case, this library

can still be suitable for them (with only a few changes).

It should be noted that the MST library is implemented so that this structure (structured

slides based on R-trees) can be replaced by another structure without much work. For

that, it is only needed to redefine the StructuredSlides class to support the new structure

in a way that the current API is maintained. This consists of changing all the code that

deals with R-trees in the StructuredSlides.cs file to deal with the new structure.

4.7 Structure editing

4.7.1 Selection and copy

When writing mathematics, content is constantly being copied and duplicated. Fre-

quently, from one step of a calculation to the next one, only small changes are made to

the expressions. Thus, one has to repeat things that were already written before when

they could simply make use of a copy operation and edit solely the parts of the expres-

sion that need to change. This copy operation would save time to the user and also

avoid the introduction of errors, which often happen when copying content. To be use-

ful, this copy operation has to be simple and natural to use. The MST library provides

features that make a copy operation straightforward and easy to use. However, to copy

content effectively and to apply rules correctly, selection of content has to be accurate

since the copy operation needs to know what it should duplicate. The selecting content

using a lasso or a gesture circle is very easy, but, in some cases, it can fail to select the

desired content. To allow accurate selection, a structured selection is available. Facil-

ities to tap on separate elements of an expression and select content according to its

structure are provided by the MST library. To illustrate this, consider the expression

62



CHAPTER 4: THE TECHNICAL DESIGN

a + b×c + d + e.

A possible use of the selection facilities provided by MST library is now presented. The

figures shown below are taken from a demo tool that was used to test the facilities.

A single tap on any of the symbols that form the expression selects the symbol itself. A

double-tap, however, can have a different effect. If one double-taps on one of the vari-

ables (a, b, c or d) the selection obtained is still the character that was tapped. No other

selection can be obtained by tapping on a variable (for variables there is no difference

between a single or a double tap). However, if a double-tap is performed on an opera-

tion symbol, the selection behaves differently. In figure 4.12, the result of a double-tap

on the last addition operation is shown. Because the tool knows the structure of the

addition operator, it selects, together with the operation symbol, the two arguments of

the operator (d and e).

Figure 4.12: Double-tap on the last addition operator

In figures 4.13 and 4.14, the result of a double-tap on the first and on the second addi-

tion operators, respectively, returns again the addition operator together with its two

arguments — but now, one of the arguments contains more than just a variable. As the

multiplication has higher precedence than the addition, the tool returns it as one of the

arguments of the addition. For the first addition symbol, if the tool returned only a+b

it would not replicate what the original expression was expressing.

Figure 4.13: Double-tap on the first addition operator

Figure 4.14: Double-tap on the second addition operator

In figure 4.15, the result of a double-tap on the multiplication operator is shown. It

works the same way as for the addition operator.

63



CHAPTER 4: THE TECHNICAL DESIGN

Figure 4.15: Double-tap on the multiplication operator

It is possible to extend the selection by continuously tapping on one of the operators.

For instance, for the expression above, if one double-taps on the first addition, a + b×c

is selected. If, with a + b×c selected, one does another double-tap on the first addition,

it will extend the selection to a + b×c + d. Repeating the same process, it will finally

select the whole expression — that is, it will extend the selection to contain +e. On the

other hand, if b×c is selected and if one double-taps on the multiplication operator, the

selection will be extended to contain the whole expression.

This structured selection is available for all the structures supported by the library (al-

gorithms, quantifiers, etc). The selection depends on FindNode method to find the node

that was tapped, and on the method FullTreeSelection to determine the selection (both

methods are defined in the Search.cs file). The method FindNode, which given a point

and a parent node (of kind ROOT or EXPR) finds the node that contains the point, is a

central method in the library. The selection and most structured manipulations depend

on it. A high-level description of the method is presented in algorithm 3.

Basically, given a node, if its bounding box contains the point, then, if the node is an

expression, continue the search through the next level of the tree; otherwise, return

the current node. If it does not contain the point, check the node on the right. The

implementation of the method FindNode contains more details than presented in Algo-

rithm 3, since it has to deal with some special cases. For example, hints in calculational

proofs are subnodes of nodes of the kind OP and that has to be taken into account in the

search. Also, the method contains an optimisation that, for simplicity, is not presented

in algorithm 3 but was already mentioned in section 4.5.1: it decides whether to start

by the last node of the expression or by the first, according to their proximity to the

point. The search starts by the node whose bounding box is nearer to the point being

searched. This can improve the method’s efficiency. Furthermore, for expressions that

are written in just one line, if the point is between two nodes, it will return the node

that is nearer to the point. This feature is useful since characters like the dot can be dif-

ficult to target with a pen, resulting in taps around its bounding box. FindNode should

be extended, in the future, for expressions written in multiple lines.

64



CHAPTER 4: THE TECHNICAL DESIGN

Algorithm 3 FindNode: Finds the node that contains the point given

if node 6= null ∧ node.BoundingBox.Contains(point) then

node = node.First;

while node 6= null do

if node.BoundingBox.Contains(point) then

if node.Kind = EXPR then

return FindNode(point,node);

else

return node;

end if

else

node = node.Right;

end if

end while

end if

return node;

Copying structure: Having a way to select content accurately, makes it possible to

copy content accurately. For that, one needs to select what one wants to copy and then

trigger the copy action. By default, the copy can be triggered by the use of the Check

(figure 4.16) gesture.

Figure 4.16: Check gesture

The point where the top-left corner of the expression’s bounding box will be placed, is

the one marked in red (the point of the gesture with the lowest x-coordinate). The copy

operation duplicates the ink and its associated structure and changes their coordinates

according to the new location. This gesture has other uses in the MST library and the

association between the copy and this gesture can be changed by the user at anytime,

as it will be detailed in sections 4.7.2 and 4.9.

65



CHAPTER 4: THE TECHNICAL DESIGN

4.7.2 Manipulation rules

As detailed in section 3.6, it is a functional requirement that this library provides sup-

port for algebraic manipulation of handwritten mathematical expressions. The alge-

braic rules that the library supports are the ones that are most often used in calcula-

tions and that consist merely of syntactic manipulation of the mathematical structures:

symmetry, add/remove brackets, group/ungroup, substitution of equals for equals (Leibniz), dis-

tributivity, and factorisation. Since mathematical expressions have a structure associated

with them, it is possible to implement these rules.

The result of applying an algebraic rule is shown in the users handwriting. That is

done by copying and moving the strokes around on the screen, after updating the tree

that represents the expression. In figure 4.17 the result of applying symmetry to the

expression a+b is shown.

Figure 4.17: Symmetry

Figure 4.17 was obtained by, first, handwriting the expression a+b, recognising it and

creating its structure. Next, the expression was copied below and the symmetry rule

was applied. As it can be seen, the handwriting of both expressions is the same.

A high-level description of the algorithm that swaps the operands of an expression

(symmetry) is shown in Algorithm 4.

Algorithm 4 Swaps the operands of the operator node given

Require: node.Kind = OP

left = node.Left;

right = node.Right;

node.Left = right;

node.Right = left;

SwapConnections(left,right);

UpdateBoundingBoxes(node, left, right);

66



CHAPTER 4: THE TECHNICAL DESIGN

The SwapConnections method interchanges all the connections of its arguments, that is,

all the pointers to the left node are changed to the right node (and vice-versa) and the

right node is changed so that it points to all the nodes pointed originally by the left

node (and vice-versa). The UpdateBoundingBoxes changes the bounding box of each of

the nodes to be the new bounding boxes of the strokes that they hold (since they change

their positions). This method also normalises the space between the three elements in-

volved in the operation, i.e., distance between the operator and the operands becomes

the same.

It should be noted that, after the execution of this algorithm, the structure of the new

expression is updated, but the ink on the screen is not. In fact, the implementation of

the Algorithm 4 creates a list of moves6. These moves correspond to the changes that

should be applied to the ink on the screen and, normally, they should be executed im-

mediately after they are returned. That can be done using the method ExecAnimations.

The same happens in all the other methods that apply algebraic rules.

For the example shown in figure 4.17, the list of moves that is created consists of three

Move instances: one for each of the nodes involved. Each Move contains two instance

variables:

p riv ate Rectangle r e c t a n g l e ;

p riv ate Point o f f S e t ;

The rectangle contains the bounding box that will be affected by the move, and the offset

is the offset that will be applied to the rectangle. In other words, if p is the left-top

corner of the rectangle, all the ink contained in that rectangle is moved to an identical

rectangle where the left-top corner is the point p + o f f set. The class Move inherits

its variables from the class AnimationMoves, which is the superclass of all the types

of moves available in the library. The other types of moves and more details on the

execution of the moves will be presented in section 4.8.

Separating the update of the structure from the update of the ink: In general, dif-

ferent systems represent ink in different ways. So, if the ink was updated inside the

manipulation methods, they would have to assume a particular representation of ink.

This would make it difficult (or even impossible) to use these methods within tools that

treat ink differently. Separating the update of the structure from the update of the ink

6Algorithm 4 omits the creation of the list of moves to simplify the presentation.

67



CHAPTER 4: THE TECHNICAL DESIGN

means that one just needs to implement the method ExecAnimations, which updates the

ink based on a list of moves. This method is very simple to implement as it only iter-

ates a list of moves and applies them to the ink7. By default, there is an ExecAnimations

method available which works on ink as defined by the Microsoft Tablet PC API.

Consistency between ink and structure: Since ink and structure updating are sep-

arated, programmers need to be absolutely sure that both will be updated after each

manipulation or, otherwise, they have to cancel the manipulation. If care is not taken,

the document can reach a point where the ink in the screen does not match the in-

ternal structure and it becomes useless. For this reason, the code that makes use of

these facilities needs to assure the execution of both the structure updating and the ink

adjustment.

User-defined handwritten characters: Some manipulation rules change the original

expression to an expression containing more strokes than the original one. Although

in some cases the new strokes can be copied from the original, there are rules that

need to introduce characters that are not part of the original expression. For example,

the manipulation rule that allows the addition of brackets to an expression needs to

introduce two new brackets. Thus, the handwritten representation of the brackets has

to be saved somewhere. Furthermore, it is desirable that this representation uses the

handwriting of the user. For these reasons, the MST library allows the definition of

user-defined characters by using the UserDefined class. If a programmer wants to add

a new manipulation rule that needs to introduce a handwritten representation of the

character ‘X’ to an ink object, they can obtain the strokes that form the character by

using the following code:

userdefined.GetStrokes(’X’, ink);

where userdefined is an instance of the UserDefined class. In section 4.11, a more general

mechanism for storing user-defined templates is presented. In the future, these two

mechanisms may be unified.

7The method ExecAnimations can be more complicated than simply iterating a list of moves. In partic-

ular, to support animations (see section 4.8) the method may need to create intermediate moves.

68



CHAPTER 4: THE TECHNICAL DESIGN

4.8 Animation support

As mentioned in the previous section, the update of the structure is separated from

the update of the ink. This is achieved by creating a list of moves while updating the

structure. This list of moves can then be applied to the ink separately. The existence of

a list of moves can be useful for teaching because, if moves are executed sequentially,

they give the illusion of an animation. This can help the students with seeing how the

rules are applied. It is important to note that the list of moves has to be carefully created

so that it makes animations useful, i.e., the order in which each part of the expression

is going to be moved, has to be easy to follow.

The types of moves available are:

• Move(rectangle,offset): moves the ink inside the rectangle by an offset;

• Copy(rectangle,offset): copies the ink inside the rectangle and moves the copy by an

offset;

• Delete(rectangle): deletes the ink inside the rectangle.

As already mentioned, these moves are executed by an ExecAnimations method.

In figure 4.18, some of the steps of the animation of the Symmetry rule are shown. It is

very difficult to convey in images the dynamics of an animation; the red arrow depicted

in the figure tries to give a better impression of the animation by indicating the moves.

The animation starts by moving b to its final position, then moves + so that it stays

equidistant from b and a, and, final, it moves a.

4.9 Gestures support

As already mentioned in section 3.8.1, the use of gestures to trigger actions is a func-

tional requirement for this library, since they can be simple and natural to use and they

usually do not interrupt the users thought. The MST library allows the association be-

tween gestures and actions and it provides mechanisms for editing these associations.

This makes it possible for the users to adapt the use of gestures according to their needs.

The gestures supported by the MST library are all the ApplicationGestures made avail-

able through the Tablet PC API, with the exception of the Tap and DoubleTap, which

69



CHAPTER 4: THE TECHNICAL DESIGN

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.18: Animation for the Symmetry rule

70



CHAPTER 4: THE TECHNICAL DESIGN

are reserved for structured selection8. A list of the application gestures, together with

notes on how to draw them, is available in [JS03, p. 356] 9.

To detect application gestures, the MST library relies on the mechanisms provided by

the Tablet PC API. However, the way gestures are used within the library depends

on the associated actions. In particular, depending on the action, the gesture points

that are used may be different. For example, if one wants to associate a gesture with

distributivity, one only has to consider two points of the gesture, i.e., one point for each

of the operators involved. However, other manipulations may need a different number

of points to be considered.

Suppose that to apply distributivity, a SemiCircleRight gesture starting at the operator

that will be distributed and ending over the operator through which it will be dis-

tributed is used (as shown in figure 4.19). Then the first and the last points of the

gesture are the only points considered. The result of applying distributivity is shown

in figure 4.20.

Figure 4.19: Using the SemiCircleRight gesture to distribute multiplication over addi-

tion

An example of a manipulation that only needs the information of one point is Leibniz,

since it only needs to identify which expression has to be replaced. For instance, a

gesture that is a good candidate for Leibniz is the Check gesture, as shown in figure 4.22.

Because this gesture is simple as a trigger and Leibniz is used often in calculational

proofs, this association seems natural. In this case, only the first point of the gesture is

considered. The process of applying Leibniz starts with the selection of the expression

8If needed, programmers can easily include the Tap and DoubleTap gestures. They only need to uncom-

ment two lines of code in the MSTVariables file.
9The list of application gestures can also be seen at

http://msdn.microsoft.com/en-us/library/ms818591.aspx

71

http://msdn.microsoft.com/en-us/library/ms818591.aspx


CHAPTER 4: THE TECHNICAL DESIGN

Figure 4.20: Result of applying distributivity

that is going to be used to substitute another one (as shown in figure 4.21).

Figure 4.21: Selection of the expression to be used in Leibniz

Supposing that a+b = a, using the Check gesture, the expression a+b is substituted by

a as shown in figure 4.22. The initial point of the Check gesture indicates the main node

of the expression being replaced. In figure 4.23 the result of applying Leibniz is shown.

Figure 4.22: Application of Leibniz using the Check gesture

An example of a task that needs to consider several points is the deletion action. An

example of a gesture that can be used for that is the Scratchout gesture (shown in figure

4.24). In this case, all the points of the gesture are considered since any strokes that are

intersected by the gesture should be deleted.

The three examples of associations between gestures and actions shown above are pro-

vided by default with the library. These gestures were defined to be intuitive or simple

enough for the particular tasks. Besides using gestures for manipulation rules and

editing tasks, gestures are also used within the library to open editing windows (the

interface shown in section 4.11.1 is an example).

72



CHAPTER 4: THE TECHNICAL DESIGN

Figure 4.23: Result of applying Leibniz

Figure 4.24: The Scratchout gesture

Adding new actions to be triggered by gestures: All the gestures facilities are avail-

able in the module Gestures. The associations between gestures and actions that are

defined are held by a global variable of the library named MSTGestureManips. To add a

new gesture to the system, a new instance of the class MSTGestureManip has to be cre-

ated. In algorithm 5, the pseudocode of the delete action and how to start its execution

is shown (where g is the object representing a gesture):

Algorithm 5

if MSTGestureManips.Contains(g) then

if MSTGestureManips[g] = MANIP_DEL then

find the node n that contains the first point of gesture g;

if n 6= null then

delete structure from slide;

end if

delete all the strokes that intersect the points of the gesture g;

end if

end if

To associate gestures with actions, an editor is provided. Figure 4.25 shows the editor

as it is shown to the users.

If a new action is added to the library, then it should be made available through this

editor so that it can be associated with gestures. To do that, one only has to add the

identifier of the action to the global variable MRulesNames. It should be noted that

one action can be associated with several gestures. However, gestures can only be

73



CHAPTER 4: THE TECHNICAL DESIGN

Figure 4.25: Gestures’ Editor

associated with one action (otherwise, it would be difficult, if not impossible in some

cases, to identify which action should be started). Note, however, that it is possible to

define actions that perform differently depending on the context. For example, before,

we have used the Check gesture to both copy structure (section 4.7.1) and to perform

Leibniz. This was possible because both are defined within the same action. For that

action, a test determines if there is a structured expression under the initial point of

the Check gesture: if there is, then replace that expression, otherwise, just copy to that

location the expression that was selected.

4.10 Markup and binary outputs for mathematical expressions

As already mentioned in section 4.6, the library contains a StructuredSlides class that

associates each slide/page of the presentation, with an R-Tree that contains all the ex-

pressions within that slide. All the objects involved in this structure are serializable10.

Thus, they can be written to a file and loaded using the standard mechanisms provided

by C#, or by using the methods SaveMSTStructure and LoadMSTStructure provided by

the MST library. It should be noted that the library does not provide any methods to

save ink, since the applications that use this library should already provide facilities

to save the content of their documents (which includes the ink). To save and load the

10The original implementation of the R-Trees was not serializable. Thus a small modification had to be

done to the original code.

74



CHAPTER 4: THE TECHNICAL DESIGN

structure at the same time as the content of the documents, programmers only have

to use (within their implementation) the methods mentioned above. Given a FileInfo f,

these methods will save (or load) the file (f.name).mst and this can be combined with

the custom save (or load) of the applications.

The MST library also provides methods to save and load single expressions together

with the ink in a plain text format. The class XML contains these methods. The text

format created has the following structure:

<ink> InkML that represents the ink </ink>

<tree> TreeML that represents the structure of the document </tree>

Basically, the file is an XML file that describes the content of the document. The InkML

[ink11] format is an XML data format for representing digital ink data that is input with

an electronic pen or stylus as part of a multimodal system. The TreeML was defined for

this project with the purpose of saving the structure of expressions. It consists only of

a few XML tags that describe the structure of the rose trees. The TreeML tags that are

currently defined are the following:

• <node> · · · </node> Describes a node;

• <bb> · · · </bb> Holds the information of a bounding box (x, y, width and

height);

• <reco> · · · </reco> Character that represents the recognition of the handwrit-

ten held by the node;

• <kind> · · · </kind> Kind of the node (1 to represent an expression, 2 to repre-

sent an operator, etc);

• <children> · · · </children> Contains the nodes that are children of the node

being described.

The InkML is written to the file using the InkML toolkit (InkMLTk [ink08]) which aims to

provide a suite of tools for working with InkML documents. In particular, the converter

ISF2inkML that is provided by the InkMLTk is used to convert an Ink object into InkML.

The result of using this converter forms the first part of the file. The second part (the

TreeML description) is generated by code created for this library, and basically walks

through the tree and writes to the file the representation of this tree.

75



CHAPTER 4: THE TECHNICAL DESIGN

Reading these files is straightforward: the InkML is loaded using the InkMLTk and the

TreeML is parsed by the library to create the rose tree that the TreeML represents. To

read the InkML, the converter InkML2ISF is used. This converter transforms the InkML

into an ISF from which an Ink object can be immediately extracted and shown on the

screen. However, there is a problem with this converter, which results in the loss of

some information about the strokes. Consequently, strokes are not loaded exactly as

they were in the original document (they appear to be thinner than originally). This

problem has already been reported to the InkMLTk community.

A fragment of the plain text format described above, showing only the representation

of a node, is presented below:

<ink>

...

</ink>

<tree>

...

<node>

<bb>4377 2439 1078 542</bb>

<reco>a</reco>

<kind>3</kind>

</node>

...

</tree>

Methods to save and load StructuredSlides to and from the plain text format are not

provided in the library, because StructuredSlides associate arbitrary objects representing

slides with R-trees. Different systems have different definitions for slides. For example,

slides may contain information about the background image or colour of the slide while

others may have a timestamp. This makes it impossible to predict which tags should

be used to represent the information. However, this mechanism for creating an XML

description of an expression is made available so that programmers can combine it

with their own file definitions if needed.

76



CHAPTER 4: THE TECHNICAL DESIGN

4.11 Experimental features

As already mentioned, the aim of this project is to provide a flexible and straightfor-

ward way to teach mathematics. For that reason, some experimental features11 were

developed. In the next two sections, these features are presented.

4.11.1 Handwritten templates

A major handicap for this project is the recognition of mathematics. As it is difficult to

recognise expressions, it becomes difficult to create structure for them. For this reason,

the MST library contains an experimental mechanism for handwritten templates. Users

are able to store expressions with structure and use them whenever they want. These

expressions can be seen as templates and, using substitution of equals for equals, can

be used to write more complex expressions. For example, the user may define tem-

plates for the GCL language that can be reused later, avoiding the burden of having to

recognise it again.

In the current system, if the user wants to use a predefined template, they can open a

template selector window using a gesture (currently the Square gesture12). If a template

is to be inserted, it is inserted at the first point of the gesture. If there is any expression

under the point, Leibniz is applied (this is a way of writing complex expressions). Fig-

ure 4.26 shows the current version of the template selector. The templates shown are a

subset of GCL expressions that can be composed to write complete algorithms. Cate-

gories can be used to organise the templates.

The idea of these templates was inspired by the Math∫pad stencils. However, com-

pared to Math∫pad, the MST library’s implementation is very primitive. For example, in

Math∫pad, when a stencil is updated, the document is also updated to reflect the sten-

cil’s changes. More importantly, in Math∫pad, one is able to create stencils representing

new structures. None of these features is currently available in the MST library.

11These features are called experimental because they were developed to test concepts that were not

developed in depth.
12Please recall that the user can change this gesture at anytime.

77



CHAPTER 4: THE TECHNICAL DESIGN

Figure 4.26: Templates selector

4.11.2 Automatic space adjustment

One feature that is implemented but is not included in the MST library is the automatic

space adjustment of mathematical expressions. This comes as a suggestion of a feature

that can improve the users experience while writing mathematics. The idea behind this

feature is that the user does not have to stop to adjust the spacing to continue with their

writing when no space is left: the tool can do that for them. For example, if the user is

editing the summation quantifier shown in figure 4.27,

Figure 4.27: Summation

the characters marked in red are adjusted automatically as the user writes inside the

quantifier expression. If the user is writing near one of these characters, the expression

extends automatically, relieving the user from the work of having to adjust it manually

and having to interrupt what they are doing. In the example of figure 4.27 the term’s

expression is not finished, so if one starts to write the rest of the expression, the ’〉’

symbol will move to the right, allowing space for finishing the term.

This feature is not included in the library since it depends on how ink is collected and

the author does not know any good way of making it available in a general form.

78



CHAPTER 5

Integration into external tools

In this chapter, a general description of how to extend tools using the MST library is

given. To illustrate that the library can be easily integrated, this chapter also describes

the library’s integration into the Classroom Presenter.

5.1 Introduction

Creating a tool for the particular needs of a group of users may make it unsuitable for

another group. A particular worrying aspect of this project was that, if an application

was provided instead of a class library, it would be too oriented to algorithmic problem

solving, which could lead it to quickly become outdated and unused. For this reason

(and others mentioned in section 3), the main result of this project is a class library that

can be easily integrated into other tools. This makes it possible for developers to freely

use within their tools features of the MST library that they might find useful, and in the

way they find best suited. Furthermore, programmers can choose features according

to what makes sense to the users of their applications. For example, in tools for doc-

ument preparation only, automatic manipulation will be useful while animations will

not make sense — since they exist for educational purposes and, in principle, a user of

a document preparation tool already understands how the rules are used.

The goal of this chapter is to show that integrating the MST library into other applica-

tions is straightforward, especially for .NET applications. In section 5.2 a brief descrip-

tion of how tools can make use of the library is given, and in section 5.3 it is described

how the library was used to extend Classroom Presenter, a system developed to create

interactive presentations using a Tablet PC, into a structure editor suited for teaching

79



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

algorithmic problem solving.

5.2 How to integrate the library

To use the MST library within a tool one has to import the library into a project, extend

the user interface to allow the use of the imported features, and start using them. In

some cases, small adaptations have to be made to match the types used by the tool

and the ones that the methods of the library are expecting. However, the library was

created to be as general as possible in order to avoid this type of problem.

The MST library is divided in modules. Each module supports one of the main features

of the library. The reason for this is that it makes the functionalities of each module

independent from other modules. 1. So, if a programmer wants to use, for example, the

gestures’ facilities provided by the library, they only have to use the functions exported

by the Gestures module.

The modules provided by the library are the following:

• Recognisers: for connecting recognisers and for recognition of the input;

• Parsers: for connecting parsers and for creating the structure representing the

syntax of the input;

• Structure: for operations on the structure (like structured selection and anima-

tions);

• Gestures: responsible for associating gestures with actions.

In the next four subsections, an overview of each module is given.

5.2.1 Module Recognisers

The module Recognisers is responsible for all the recognition facilities and for the con-

nection to available recognisers. To use the facilities provided by this module one has

to import the MST.Recognisers namespace and, if one does not want to use the de-

fault recogniser (the module has already one recogniser defined), one has to define

1However, there are internal dependencies — for example, the module Gestures assumes the structure

defined in the module Structure.

80



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

a MSTRecogniser, i.e. define a class that implements the interface MSTRecogniser. This

interface has one single method with signature:

public RecAlternatives mstRecognize(Strokes s);

which has to be defined by the classes that implement the MSTRecogniser. This mstRec-

ognize method is the central part of the recognition. The aim of this method is to recog-

nise the strokes given as input and return a RecAlternatives, which is a list of pairs of the

form (Recognition, BoundingBox), i.e. the recognition of a given character together with

its bounding box. This list of pairs consists of the results returned by the recogniser

being used. These can then be shown to the user so that they can choose the correct

recognition result.

This process can be done step-by-step by the programmer, but to help with the process

of calling the recogniser and showing the recognition results to the user, the CallRecog-

niser class was created. This class has four instance variables:

1. Strokes stroke: strokes to be recognised;

2. MSTRecogniser rec: recogniser to be used;

3. String BoundingBoxes: bounding boxes of the strokes being recognised;

4. String recResultSelected: recognition result;

and it can be used in two ways:

1. CallRecogniser(Strokes strokes): creates an instance of the class with the strokes

given as argument and with the default recogniser — which is defined to be the

recogniser from Maple;

2. CallRecogniser(MSTRecogniser recognizer, Strokes strokes): creates an instance with

the strokes given as argument and the recogniser recognizer — the argument of

the method.

After the creation of an instance of the class CallRecogniser, the method with signature:

public String recognize();

can be called on the instance. This method will recognise the instance’s strokes using

the instance’s recogniser. By the end of its execution, the values of BoundingBoxes and

81



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

recResultSelected are set and can be accessed. During the execution of this method a

window with the recognition alternatives is shown to the user. The user is given the

freedom to choose the correct recognition or even edit the recognition results in case

they do not match the input. The value selected/introduced by the user is the one that

will be set as the recResultSelected.

Using the facilities provided by the module Recognisers, programmers do not have to

worry about all the intermediate steps between sending strokes to the recogniser and

obtaining a recognition result. The only work that has to be done by the programmer

is to create a MSTRecogniser, in case they want to use a specific recogniser. Otherwise,

the default recogniser is used and the programmer does not even have to worry about

that.

In summary, to make use of the module Recognisers the following steps are needed:

1. import MST.Recognisers;

2. define class that implements the MSTRecogniser (optional);

3. create an instance of the class CallRecogniser;

4. and, finally, call the method recognize on the CallRecogniser’s instance.

5.2.2 Module Parsers

The module Parsers allows the connection of parsers, and is responsible for the creation

of structure for handwritten input.

Similarly to the module Recognisers, to use the facilities provided by the module Parsers,

one has to import the MST.Parsers namespace and define a MSTParser — a class that

implements the interface MSTParser. This interface also has one single method with

signature:

public Node mstCreateStructure(String reco);

which has to be implemented by the classes that implements the MSTParser. The Node

returned by the method above corresponds to the root of the tree that holds the whole

structure that represents the string given as argument. As mentioned in chapter 4,

the string argument is composed of the recognition string and the information of the

bounding boxes of the strokes that where recognised. An example of such a string is:

82



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

"4366 3168 3518 949 a 4366 3541 1002 576 + 6031 3496 689 474 b 7323 3168 561 835".

This string represents the expression a + b where each set of four integers forms a

bounding box of the form (x coordinate, y coordinate, width, height), being the first

set of four integers the bounding box of the whole expression and each set of four

values after each character the character’s bounding box. Thus, in order to make the

mstCreateStructure method work, a string of this form has to be created. To avoid the

work of having to do each step of the parsing process separately (like having to create

the string that the mstCreateStructure is expecting as input) a class called CallParser was

created. This class has three instance variables:

1. String exp_reco: string to be parsed;

2. String boundingBoxes: string representing the bounding boxes of the symbols that

form the expression being parsed;

3. MSTParser parser: parser that will be used;

and similarly to the CallRecogniser described in the previous section, this class can be

used in two ways:

1. CallParser(String exp_reco, String boundingBoxes): creates an instance of the class

with the string exp_reco, the bounding boxes boundingBoxes and with the default

parser. The default parser is defined to be the DynamicAntlr parser that was de-

scribed in chapter 4;

2. CallParser(MSTParser parser, String exp_reco, String boundingBoxes): same as method

above but, in this case, the parser is set to be the parser given as input.

Note that the programmer does not have to calculate the bounding boxes of the char-

acters, as these can be created by the module Recognizers.

After the creation of an instance of CallParser, the method with signature:

public Node createStructure();

can be called on the instance. This method will create the string that combines the

recognition result with the bounding boxes, send it to the parser and return the root

node of the tree that represents the expression.

83



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

In summary, to make use of the module Parsers the following steps are needed:

1. import MST.Parsers;

2. define class that implements the MSTParser (optional);

3. create an instance of the class CallParser;

4. and call the method createStructure on the CallParser’s instance.

5.2.3 Module Structure

The module Structure is the module responsible for all the structure definitions and

facilities. In this section, we concentrate on the use of its facilities. For a more technical

description of this module, please see chapter 4.

To make use of this module, one has to import the namespace MST.Structure. Struc-

tured selection, manipulation rules and animations are all facilities provided by this

module. Of course that these were created for the type of trees that were defined in this

library and, as such, to make use of these the structure to which they are applied has to

be consistent with the structure defined in this project.

The Search class is the one responsible for structured selection. Its main methods are

FindNode and FullTreeSelection with the following signatures:

public static Node FindNode(Point p, Node n);

public static Strokes FullTreeSelection(ArrayList SelectedNodes,

Node n, Point p, Strokes wholeScreen);

Given an expression represented by the node n and a point p, the method FindNode

finds the (sub-)node that contains the point p. For example, if the arguments are the

root node of a tree that holds the expression a+ b×c, and a point intersecting the strokes

of the multiplication sign, FindNode returns the node that hold the multiplication sign

(×). This method is often used to identify the node where the user has touched with

the pen.

The method FullTreeSelection is responsible for the structured selection of expressions.

The argument n corresponds to the root of the tree that holds the slide where the

method was triggered, SelectedNodes is the list that holds all the nodes that are selected

84



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

and to which new nodes will be added, p is the point where the structured selection

was triggered, and wholeScreen holds all the strokes in the context. This method returns

a Strokes object containing all the strokes that should be put in the selection.

The class ManipulationRules holds all the methods related with the manipulation rules

and animations. The rules currently defined are reverse, group, ungroup, add brack-

ets, remove brackets, distributivity, factorisation, and Leibniz. The signatures of the

methods available are the following:

1. public static ArrayList reverse(Boolean animation, Node root, Strokes selected, Ink ink,

Form f): reverses the strokes selected according to their mathematical structure;

2. public static Node group(Node root, Strokes selected): groups the strokes selected ac-

cording to their mathematical structure;

3. public static void ungroup(Node root, Strokes selected): ungroups the strokes selected

according to their mathematical structure;

4. public static void addBrackets(Node root, Strokes selected, UserDefined currentUser, Ink

ink): adds brackets to the strokes selected. It needs to access a UserDefined instance

so that it can retrieve the user’s handwritten representation of the brackets;

5. public static void removeBrackets(Node root, Strokes selected, Ink ink): removes the

outermost brackets of the strokes selected;

6. public static ArrayList distribute(Boolean animation, Ink ink, Node initial, Node final):

distributes the operator in the node initial over the operator in the node final;

7. public static ArrayList factorise(Boolean animation, Strokes selected, Node root, Node

initial): factorises the operator in the node initial and its left operand out of the

whole expression represented by the strokes selected;

8. public static Node Leibniz(Node n, Node n0, Point inkPoint, Ink ink, Strokes selected):

replaces the expression whose main node is n by the expression whose main node

is n0. The inkPoint is the point where the trigger for the rule was detected (for

instance, a tap), and selected are the strokes that will replace node n’s strokes (their

representation has root node n0).

In the above, the argument animation indicates whether the operation should be ani-

mated, the root argument is the root of the tree that represents the expression to which

85



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

the rule is being applied, the argument ink is the Ink object that contains the whole ink

of the slide, and the form f is the form where the action is being triggered. For all these

methods, actions are executed only if they maintain a structure that makes sense in

mathematical terms (for example, they will not replace "a + b" by "a +" since addition

is a binary operator).

As previously mentioned, the module Structure has all the definitions for the structures

used within the methods of the MST library. As detailed in section 5.2.2, the struc-

ture for a single mathematical expression can be obtained by using the createStructure()

method. If the programmer wants to store multiple expressions within the same spatial

context — for example, multiple expressions in a single slide — the class StructureSlide

can be used2. This class has one single instance variable (Hashtable structSlides) which

associates identifiers of slides with the RTree that holds all the expressions present in

that slide. To use this class one just needs to create an instance (new structuredSlide())

and use the methods add, get, and del to add, access and delete expressions stored in the

RTrees. Some of the methods described in this chapter assume the existence of a slide

identifier (slideId) and using this class can simplify the use of those methods. Nonethe-

less, existent structures can still be used either by mapping them into a StructuredSlide

or by defining a new variable in the MSTVariables class with the name structSlides that

provides methods with the same signature as the ones available in the StructuredSlide’s

class.

5.2.4 Module Gestures

The module Gestures is responsible for the association of gestures with actions. As

already described in chapter 4, users can edit, in runtime, the association between ges-

tures and actions making it possible for each user to choose whichever gestures they

find more convenient. To make use of this module the namespace MST.Gestures needs

to be imported. The Main class in this namespace contains the method with the follow-

ing signature:

public static bool exec_gesture(Object slideId, Object selectionSlideId,

ApplicationGesture g, ArrayList pts, Ink ink, Strokes selection, Form f1);

With this method, given the slide where the action should be done (identified by slideId)

and the selectionSlideId which is the id of a slide with a selection (it is needed for actions

2As explained in chapter 4, this class is based on range trees.

86



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

that require a set of selected strokes — for instance, Leibniz needs an indication of

which strokes will replace the ones that will be removed), given an application ges-

ture g, a list of points (pts) that form the stroke that triggered the gesture, the ink of

the current slide, the selected strokes (selection) and the form where the action was trig-

gered (f1), it executes the action associated with the given application gesture. The form

needs to be given as an argument so that its screen can be updated after the moves of

its strokes. The information about which action should be executed is retrieved from

the hashtable MSTGestureManips, which is defined in the class MSTVariables. The MST-

GestureManips associates gestures with instances of the class MSTGestureManip. This

class has the following instance variables:

1. String name: name of the manipulation;

2. String description: description of what the manipulation does.

The available MSTGestureManip instances are defined in the class MSTVariables. If other

instances are needed, they should be added to this class. By default, some gestures

are already associated with actions. To change the default associations and add new

associations, the form GestureEditor can be used.

5.3 An Example: Extending Classroom Presenter

Classroom Presenter (CP) [AAHW04, AAS+] is a tool which aims to facilitate the active

learning in the classroom by the use of networked Tablet PCs and digital ink. The

lecturer can create a network session to which the students can connect using their

own Tablet PCs. Through that network, the lecturer can distribute electronic slides,

which will be received by the students’ computers. The lecturer can annotate the slides

and the annotations are sent to the students and to a public display in real-time. Thus

students can follow through their own computers what the lecturer is doing and they

can add their own comments to presentations, which they can then submit through the

network to the lecturer. The lecturer can also pose activities for the students to solve

in their own machines and send their solutions back to him. The lecturer receives the

students’ submissions in a private filmstrip and can show them to the whole class if

desired.

As CP is an application that is aimed for teaching and emphasises interactivity in the

classroom, it is a good example of an application that can make use of the function-

87



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

alities that the MST library provides. Moreover, as this tool has already many func-

tionalities that are useful for teaching (like presentations being shown in real-time in

the students’ computers, inking with different colourings and powerpoint slides man-

agement), it can be used as a basis for the construction of a standalone, ready-to-use

structure editor of handwritten mathematics.

Extending the CP has posed many difficulties, mostly because of the non-existent doc-

umentation. However, the main features described in previous chapters were success-

fully integrated into the CP. This supports the claim that the MST library is usable and

general enough to be used by tools that were created with no attempt to make them

compatible with the library.

Before describing how the integration was done, an example scenario of the use of the

CP is presented in the figures 5.1 and 5.2 below.

(a) Teacher’s screen: teacher

poses a problem

(b) Student’s screen: student

writes a solution

Figure 5.1: Classroom Presenter in use

In figure 5.1a, the lecturer writes a problem for the students. In figure 5.1b, one student’s

screen is shown with the answer that the student is going to send to the lecturer.

Figure 5.2a shows the lecturer’s screen — the answers of the students are on the top-

right corner of the screen (highlighted in red). Three answers were received. In figure

5.2b, the lecturer’s screen is once again shown but, this time, the lecturer has selected

one of the students’ answers to be shown to the audience.

The interaction in the classroom can be improved using this tool (tests performed con-

firm this; see section 6.3). Most students do not like to raise their hands and provide

an answer during a lecture. Writing it, sending it back to the teacher and, for example,

having it shown without being identified, can make them engage better with the mate-

88



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

(a) Teacher receives solutions

from students

(b) Teacher selects one solution

Figure 5.2: Classroom Presenter in use

rial. This also gives the teacher the opportunity to add as much or as little content to its

presentations during the lecture, being assured that the students will have a copy of it

immediately and that they can add their own comments to it while the content is being

taught.

The extended version of the CP now supports all the main features provided by the

MST library. The following example shows some of those features in use. Figure 5.3

shows a slide with an intermediate step of a derivation of Euclid’s algorithm:

Figure 5.3: Intermediate step of a derivation of Euclid’s algorithm

As structure is created for all the mathematical expressions present in the screen (in-

cluding the algorithm), the structure can be manipulated to continue with the deriva-

tion. Note that ∼ in the example represents the assignment to a variable (c ∼ x assigns

the value of x to c).

In figure 5.4a the expression m−n is selected in order to substitute x by it; in figure 5.4b

89



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

Leibniz is used to make the substitution — the tick gesture triggers Leibniz; in figure

5.4c the result of the substitution is shown.

(a) Select expression (b) Use tick gesture to trigger Leibniz

(c) Result
Figure 5.4: Derivation of Euclid’s algorithm (Part I)

In figure 5.5, the subexpression n in m−n is replaced by a using Leibniz.

In figure 5.6, a step similar to the previous one is done: m in m−a is replaced by c.

In figure 5.7, y is replaced by c−a using, again, Leibniz.

Finally, in figure 5.8, c−a is selected, the manipulation rule reverse is triggered through

the menu and the final result is obtained.

This example is simple and most of the steps could have been done by simply deleting

and copying strokes. However, one should not forget that this is only an illustration

of what can be done and these features scale to more complicated problems, where

much larger expressions are involved. The features provided by the MST library are

a simple and reliable way of doing this kind of calculation, since they assist with the

manipulations involved and help to avoid the introduction of error — which happens

often when using copy-and-paste.

90



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

(a) Select expression (b) Use tick gesture to trigger Leibniz

(c) Result
Figure 5.5: Derivation of Euclid’s algorithm (Part II)

(a) Select expression (b) Use tick gesture to trigger Leibniz

(c) Result
Figure 5.6: Derivation of Euclid’s algorithm (Part III)

91



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

(a) Select expression (b) Use tick gesture to trigger Leibniz

(c) Result
Figure 5.7: Derivation of Euclid’s algorithm (Part IV)

(a) Select expression and use menu to

trigger reverse

(b) Result

Figure 5.8: Derivation of Euclid’s algorithm (Part V)

92



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

5.3.1 Technical details

The version of the Classroom Presenter that is used in this project is 3.1 Version 1719. CP

is written using the Microsoft’s Tablet PC API and, in particular, it uses the RealTimeSty-

lus class which provides lower-level, higher performance access to stylus input than

standard ink collection. The RealTimeStylus is designed to provide real-time access to

the data stream from the tablet pen. Since MST library was initially created to use with

a standard ink collection (in particular, the use of an InkOverlay), small adaptations

had to be done. For instance, the method ExecAnimations of the MST library:

public s t a t i c void ExecAnimations ( ArrayList moves , InkOverlay inkOver )

{

ExecAnimations ( moves , inkOver , null ) ;

}

assumes the existence of an InkOverlay, which does not exist in the case of the CP. But

to solve this type of incompatibilities, methods as simple as the following:

public s t a t i c void ExecAnimations ( ArrayList moves , Ink ink , Form f )

{

InkOverlay io = new InkOverlay ( ) ;

io . Ink = ink ;

ExecAnimations ( moves , io , f ) ;

}

were created. The few type incompatibilities that were found were solved with the

addition of simple wrapper methods like the one shown above3.

One of the goals of the integration of the MST library into the the CP was to keep the

changes to the CP as minimal as possible. This goal was achieved since the integration

of the library involved adding code instead of changing the original source code. To

achieve the goal of adding the library’s features to the CP two main additions were

made to the CP’s implementation:

• inclusion of the LassoPlugin;

• and the creation of the menu MathSpadMenu.

3The methods that were created to overcome the incompatibilities with the Classroom Presenter are now

part of the library and make the library suitable for tools that use the RealTimeStylus.

93



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

LassoPlugin This class is responsible for the lasso selection tool. The LassoPlugin class

was already written but, for some unknown reason, it was not being used within the

CP. Now it is used and, with some additional code, it is now responsible for all the

selection facilities and for the triggering of gestures. To enable gesture recognition in

the CP the following code was added to the PresentationLayout.cs file:

GestureRecognizer myGestureRec = new GestureRecognizer ( ) ;

Appl icat ionGesture [ ] gs = { Applicat ionGesture . Al lGestures } ;

myGestureRec . EnableGestures ( gs ) ;

myGestureRec . Enabled = t rue ;

t h i s . m_RealTimeStylus . AsyncPluginCol lect ion .Add( myGestureRec ) ;

Here, a GestureRecognizer is created and enabled, and the interest of the myGestureRec

in all possible gestures is declared. The myGestureRec is then added to the AsyncPlug-

inCollection so that it can interact with the data stream from the tablet pen. To indicate

what to do when a gesture is recognised, the following code was added to the Lasso-

Plugin:

void IS ty lusSy ncPlug in . CustomStylusDataAdded ( RealTimeStylus sender ,

CustomStylusData data )

{

( . . . )

i f ( data . CustomDataId == GestureRecognizer . GestureRecognitionDataGuid )

{

GestureRecognit ionData grd = ( GestureRecognit ionData ) data . Data ;

Ges tur eAl ter nate ga = grd [ 0 ] ;

i f ( afmCollected . Count != 0) / / I f t h e l a s s o has c o l l e c t e d d a t a .

{

using ( Synchronizer . Lock ( t h i s . m_Display . SyncRoot ) )

{

using ( Synchronizer . Lock ( t h i s . m_Sheet . SyncRoot ) )

{

bool g = MST. Gestures . Main . ex ec_g es tur e (

t h i s . m_Display . S l i d e . Id , a fmSe lec t ionSl id e Id ,

ga . Id , afmCollected , t h i s . m_Sheet . Ink ,

t h i s . afmSelect ion , t h i s . m_Control . FindForm ( ) ) ;

( continued next page )

94



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

( continued from previous page )

i f ( g )

{

t h i s . m_Sheet . S e l e c t i o n = null ;

}

CPr esenter _updateL isteners ( t h i s . m_Sheet ) ;

}

}

}

}

}

The IStylusSyncPlugin.CustomStylusDataAdded is triggered when custom data is avail-

able. When that custom data consists of a gesture the if statement above will be ex-

ecuted. In short, the gesture is identified (as a “check”, “circle”, etc) and, if the lasso

was used to trigger the gesture (afmcollected.Count != 0), then all the relevant locks are

applied and the method exec_gesture from the MST library is called. After all the actions

triggered by the gesture are completed, all the listeners of the current session receive

the updated screen.

With respect to the structured selection, the following code was added:

void IS ty lusSy ncPlug in . SystemGesture ( RealTimeStylus sender ,

SystemGestureData data )

{

( . . . )

/ / Double t a p

i f ( data . Id == SystemGesture . DoubleTap )

{

taps = 2 ;

using ( Synchronizer . Lock ( t h i s . m_Display . SyncRoot ) )

{

using ( Synchronizer . Lock ( t h i s . m_Sheet . SyncRoot ) )

{

( continued next page )

95



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

( continued from previous page )

Point x = new Point ( lastX , l a s t Y ) ;

Node r oot = MSTVariables . s t r u c t S l i d e s . get (

t h i s . m_Display . S l i d e . Id , x ) ;

i f ( r oot != null )

{

i n t sncount = selectedNodes . Count ;

MST. S t r u c t u r e . Search . F u l l T r e e S e l e c t i o n (

selectedNodes , root ,

x , t h i s . m_Sheet . Ink . S tr ok es ) ;

Rectangle r ;

fo r ( i n t i = 0 ; i < selectedNodes . Count ; i ++)

{

r = ( ( Node) selectedNodes [ i ] ) . BoundingBox ;

s e l e c t e d S t r o k e s .Add( t h i s . m_Sheet . Ink . HitTest ( r ,

MSTVariables . p e r c e n t I n t e r s e c t ) ) ;

}

t h i s . m_Sheet . S e l e c t i o n = s e l e c t e d S t r o k e s ;

t h i s . a fmSe lec t ion = s e l e c t e d S t r o k e s ;

t h i s . a f m S e l e c t i o n S l i d e I d = t h i s . m_Display . S l i d e . Id ;

t h i s . m_Display . I n v a l i d a t e ( ) ;

}

}

}

}

}

When a double tap is detected, the node that contains the point of the last tap (x) is

obtained and used as an argument for the FullTreeSelection method from the MST li-

brary. After its execution, all the strokes contained in the selectedNodes are added to the

selectedStrokes which are then set to be the current selection.

As the two examples above show (structured selection and gestures), the use of the

MST library’s methods in the CP is quite straightforward. However, some small changes

had to be done to other parts of the CP’s code. For example, some new variables

where added to the code to keep values that are needed for the use of the MST library’s

methods and their values are set while the system is handling packets (HandlePackets

method). Variables like afmSelection, afmCollected, lastX, lastY are new and correspond

96



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

to, respectively, the last selection that was done, the last sequence of points collected

through the use of the lasso, and the x and y coordinates of the last point where the

stylus touched the screen.

MathSpadMenu The MathSpadMenu corresponds to a new menu in the user inter-

face, from which the user can start the recogniser, create new structure, manipulate

structure, turn on/off the animations and access the editors for the operators and ges-

tures. This class was created following the same structure of the other menus that were

already available in the CP. For each of the menu options a class was created contain-

ing the definition of the constructor for the menu item and definition of the behaviour

when the menu item is clicked. For example, for the recognition and creation of struc-

ture the following class was created (some code has been omitted for simplicity):

public c l a s s RecognizeMenuItem : MenuItem , InkSheetAdapter . IAdaptee

{

protected readonly PresenterModel m_Model ;

p riv ate readonly EventQueue m_EventQueue ;

p riv ate InkSheetModel m_Sheet ;

public RecognizeMenuItem ( ControlEventQueue dispatcher ,

PresenterModel model )

{

t h i s . m_EventQueue = d ispatcher ;

t h i s . m_Model = model ;

t h i s . Text = " Recognise and c r e a t e s t r u c t u r e " ;

Misc . MenuShortcutHelper . Se tShor tcut ( this , Keys . Control | Keys .M) ;

}

protected override void OnClick ( EventArgs e )

{

base . OnClick ( e ) ;

using ( t h i s . m_Model . Workspace . Lock ( ) )

{

using ( Synchronizer . Lock (

t h i s . m_Model . Workspace . CurrentDeckTraversal . Value . SyncRoot ) )

{

( continued next page )

97



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

( continued from previous page )

SlideModel s l i d e =

t h i s . m_Model . Workspace . CurrentDeckTraversal . Value . Current . S l i d e ;

InkSheetModel shee t = ( InkSheetModel ) s l i d e . AnnotationSheets [ 0 ] ;

using ( Synchronizer . Lock ( shee t . SyncRoot ) )

{

Micr osof t . Ink . S tr ok es s e l e c t i o n = shee t . S e l e c t i o n ;

i f ( s e l e c t i o n != null )

{

Cal lRecognizer cr = new CallRecognizer ( s e l e c t i o n ) ;

S t r i n g c = cr . recognize ( ) ;

S t r i n g bb = cr . BoundingBoxes ;

C a l l P a r s e r cp = new C a l l P a r s e r ( c , bb ) ;

MSTVariables . r oot = cp . c r e a t e S t r u c t u r e ( ) ;

MSTVariables . s t r u c t S l i d e s 2 . add ( s l i d e . Id ,

MSTVariables . r oot ) ;

}

else

{

MessageBox . Show( "You have to s e l e c t something ! " ) ;

}

}

}

}

}

( . . . )

}

The RecognizeMenuItem constructor was created similarly to the ones already existing in

the code. The OnClick method obtains all the locks that are needed to avoid interference

from other actions and makes use of the CallRecognizer and CallParser classes that were

mentioned and detailed in section 5.2.2 and chapter 4. First, the CallRecognizer is used

and its result is passed as an argument to the CallParser. The result returned by the

CallParser is then used to be inserted in its correct position in the tree of the slide where

the expression is situated. For all the other menu and sub-menu items, similar classes

were created making direct use of the methods provided by the MST library.

98



CHAPTER 5: INTEGRATION INTO EXTERNAL TOOLS

5.3.2 Conclusions

The use of the MST library within the Classroom Presenter 3.1 has proved to be quite

straightforward. Most facilities were used almost directly with only a few small adap-

tations needed. Of course, without documentation, this integration took a significant

time to be done but it could possibly be done much quicker if it was done by the CP’s

creators.

Also due to the lack of documentation, some features are not implemented as in the

original CP implementation. For instance, it was difficult to update the listeners’ (stu-

dents) slides when ink was changed. In the CP, ink is seen by the listeners in real-time,

but in this adaptation only the final results of the use of gestures and animations are

seen on the listeners’ side. Having more knowledge of how to update the listeners

should make it possible to overcome this problem. However, animations are still use-

ful since they can still be seen in the public display that everyone in the classroom

should be able to see.

In conclusion, the integration of the MST library into the Classroom Presenter supports

the point that the library is usable and easy to use within other projects.

99



CHAPTER 6

Evaluation and testing

In this chapter, the results of the tests carried out to evaluate the functionalities of the

MST library are presented. The tests are divided in two parts: teachers’ testing and

students’ testing.

Teachers’ testing consists of a combination of usability and suitability testing whilst

students’ testing concentrates only on suitability evaluation. Details about each part,

as well as a discussion about the results, are given in the following sections.

6.1 Software evaluation

Software can be evaluated for many purposes: detection of bugs, usability testing, suit-

ability evaluation, performance testing, etc. Although detection of bugs and perfor-

mance testing are crucial in industry, they may not be crucial in some other contexts.

In the scope of a research project, for instance, usability testing and suitability testing

can be more important than performance testing. As in the scope of the MST library’s

project the goal is not to provide a professional tool but, instead, to provide a prototype

that exemplifies new ways of dealing with mathematical content and presenting it to

an audience, usability and suitability testing are important.

The aim of the evaluation of the MST library is to determine if its functionalities are

usable and whether or not they are suitable for the goals of the project. The testing per-

formed is based on use cases representing common interactions between users and the

system. The usability testing is focused on teachers as they are the intended main users

of the system. It was carried out following the suggestions in [Rub94]. The suitabil-

ity testing [Has08, Chapter 5] aimed at determining whether the system is suitable for

100



CHAPTER 6: EVALUATION AND TESTING

helping the users execute their tasks. Normally, when performing suitability testing,

users interact directly with the system. In this case, teachers interacted directly with the

system, but students did not, because the idea was to emulate the situation that occurs

more often in practice: the teacher delivers some mathematical content and students

observe and take notes. Suitability was measured through the use of questionnaires.

As it will be clear in the following sections, the results obtained are positive and seem

to indicate that the functionalities provided are “fit for purpose” and usable.

6.2 Evaluation by Teachers

The main purpose of this part is to record the teachers views on the usefulness of the

product as a teaching aid, the difficulties found whilst using the software and their

general opinion about the software’s features. The number of testers was small and, as

such, the results do not provide definite answers. However, they provide an indication

of the system’s usability and usefulness.

Problem Statements:

1. Is the software usable?

2. Do users think that the software is useful for teaching?

3. What difficulties did they find whilst using the system?

4. Which features did they find useful?

5. Is there any relation between the users’ opinion about the calculational method

and their opinion about the software?

6. What are the users’ suggestions for improving the software?

7. What is their opinion about the technology used (pen versus touch and pen ver-

sus keyboard)?

User Profile: Teachers and PhD students that have been exposed previously to the

calculational method. Some users use the calculational method to teach and some have

only been exposed to it in a course. Most users have never used a Tablet PC.

101



CHAPTER 6: EVALUATION AND TESTING

Number of users: 8 (eight).

Methodology: Users were given a guide (see Appendix A) detailing some steps that

they had to follow in order to write a proof using the system. A questionnaire (see

Appendix B) was given to record their opinion. Also, the users were observed by a

monitor.

6.2.1 Results

Is the software usable?

To determine whether the software is usable or not, users were given a task guide to

follow. The guide detailed a sequence of steps to be performed in order to produce

a proof. For each step, the user was asked to record the level of difficulty in using

each feature involved. The results obtained clearly indicate that the level of difficulty

decreased as the users got familiar with the software. The level of difficulty reported

by most users at the first use of each feature decreased with further uses. The monitor

noticed that during the first minutes of the test, most users struggled to perform the

tasks1. However, they soon got used to the software/pen and performed the remainder

of the test without problems.

In table 6.1 the average results reported for the features used during the task are pre-

sented2. For features that had multiple uses, the results for the first and last use are

reported. For the remainder, the results for the first use are shown. The level of diffi-

culty was expressed using a scale from zero (Very easy) to four (Very difficult)3.

For the Selection and Copy features it is clear that the difficulty decreased. For Leibniz,

although only slightly, the level of difficulty increased. However, it is still reported

as easy to perform. This increase can possibly be linked to the respective steps of the

proof: Leibniz is triggered by drawing a check over a symbol; the first point of the check

is used to determine which symbol should be substituted; in the last use of Leibniz the

symbol to be substituted is much smaller than in the first use making it more difficult

to target it. All the other features were regarded as easy or very easy to use at the first

attempt.

1Some problems were due to the users being unfamiliar with the use of Tablet PCs
2The average results are rounded to two decimal places
3In the actual test the scale used was the inverse: 0 (Very difficult) to 4 (Very easy). This scale was

inverted to facilitate the exposition of the results.

102



CHAPTER 6: EVALUATION AND TESTING

Table 6.1: Level difficulty reported(0 - Very easy; 4 - Very difficult)

Feature First use Last use

Selection 2.00 0.75

Copy 1.38 0.50

Leibniz 0.50 0.63

Add brackets 0.38 n/a

Distributivity 1.00 n/a

Remove brackets 0.50 n/a

Ungroup 1.00 n/a

Figure 6.1 shows the average of the level of difficulty reported by the users for each

step of the proof. It is clear from the graphic that the level of difficulty decreased as the

users got familiar with the software. Moreover, the level of difficulty never exceeded

the level of 2 (two) which seems to indicate that the software is usable.

Figure 6.1: Level of difficulty in using the features (0 - Very easy; 4 - Very difficult)

When asked how easy it was to complete the task using the software, the average result

was 0.88 meaning that, on average, the users found it easy to use the software.

Do users think that the software is useful for teaching?

Users were asked to comment on the statement “The features provided by this software

can help with teaching mathematics”. In figure 6.2 the results are presented4.

Clearly, the users agree with the statement (5 (63%) users do agree and 3 (38%) do

4Some of the percentages shown in this chapter do not add up to 100%, due to the rounding. For

example, percentages 62.5% and 37.5% will be shown as 63% and 38%.

103



CHAPTER 6: EVALUATION AND TESTING

Figure 6.2: Statement: The features provided by this software can help with teaching

mathematics

strongly agree). No one disagrees.

What difficulties did they find whilst using the system?

Users were asked about the difficulties they found when using this software. Three

users reported that they had no particular difficulties apart from getting used to the

software initially. One reported difficulties with performing taps in the first attempt

but it became very easy. One reported problems with selecting substructures but in-

dicates that the problem could have been their inexperience with tablets. One user

reported problems with taps and difficulty in knowing if “invisible” actions had been

applied (“invisible” in the sense that the change in structure does not change the ink,

e.g. associativity) — however, it can be easily checked by using taps. Another user

reported problems with gesture recognition, accessing the menu, and implicit binding

of operators (again, in the sense that it is not visible — for instance, the precedence of

operators). One user reported problems with using distributivity.

Overall, users did not seem to find many difficulties in using the system. However, as

two users report difficulties with “invisible” structure, it may be useful to improve it in

the future.

Users were also asked to indicate what they disliked the most about the software. An-

swers included the inability to move text (1 user), selection did not always work (2

users), bad gesture recognition (1 user), and the use of menus to apply certain actions

(which was indicated by 4 users). The results indicate that the main dislike is regarding

the use of menus for some actions. That should be improved in future versions.

104



CHAPTER 6: EVALUATION AND TESTING

Which features did they find useful?

Users were asked their opinion about some specific features. When asked if they

thought that animations would be useful for teaching, 6 (75%) users answered Yes

whilst only 1 (13%) answered No; 1 (13%) did not provide an answer. Figure 6.3 shows

the results. Clearly, animations are seen as a useful feature.

Figure 6.3: Do you think that animations would be useful for teaching?

Users were also asked if a play/pause feature for the animations would be useful (fig-

ure 6.4): 6 (75%) users answered Yes; 2 (25%) answered No.

Figure 6.4: Do you think that play/pause features for the animations would be useful?

Regarding the use of gestures to trigger actions, users clearly like it (figure 6.5). When

asked their opinion on the statement “Gestures are a good way to trigger actions”, all

the opinions were positive (7 (88%) users strongly agree and 1 (13%) agree).

When asked if they prefer to manipulate formulae through structure manipulation

rather than by moving ink, users definitely preferred the structure manipulation: 5

(63%) users strongly agree with the statement “I prefer to manipulate a formula through

105



CHAPTER 6: EVALUATION AND TESTING

Figure 6.5: Statement: Gestures are a good way to trigger actions

the structure than manually moving the ink around to obtain the desired result” and 3

(38%) agrees with the statement.

Figure 6.6: Statement: I prefer to manipulate a formula through the structure than

manually moving the ink around to obtain the desired result

Users were also asked to indicate what they liked the most about the software. The

answers included accuracy of copy, using a gesture to apply distributivity, applying

distributivity automatically, showing the dynamics of formulae manipulation, simplic-

ity, and intuitive usage.

Is there any relation between the users’ opinion about the calculational method and

their opinion about the software?

Given that every user had a positive opinion about the calculational method, it is not

possible to draw a conclusion. However, as the overall opinion about the software

is positive, this can suggest that users that like the calculational method also like the

software.

106



CHAPTER 6: EVALUATION AND TESTING

What are the users’ suggestions for improving the software?

The suggestions include a menu displaying a list of possible selections when attempt-

ing to select, display of syntax tree, making “invisible” syntax visible by using colours,

add more icons to the menu to trigger the actions available currently in a sub-menu,

add ability to select and move text, link gestures to a sequence of actions, use auto-

complete for some structures, and manipulation of brackets by using gestures.

What is their opinion about the technology used (pen versus touch and pen versus

keyboard)?

Figure 6.7 shows the teachers opinions on the statement “I prefer to use the hand-

written representation of formulae than their representation in typeset”. 3 (38%) users

have no preference between the handwritten representation of formulae and its typeset

representation; 2 (25%) users have a preference for the handwritten representation; 1

(13%) user prefers the typeset representation; 1 (13%) strongly prefers typeset; 1 (13%)

user did not provide an answer. These results seem to suggest that there is no strong

tendency to a type of representation.

Figure 6.7: Statement: I prefer to use the handwritten representation of formulae than

their representation in typeset

In figure 6.8 the teachers opinions about the statement “I find it easier to handwrite

mathematics than writing it using a keyboard” are presented. 3 (38%) have a strong

preference for handwriting mathematics; 2 (25%) users have a preference for handwrit-

ing mathematics; 1 (13%) user has no preference; 1 (13%) strongly prefers the use of a

keyboard; 1 (13%) did not provide an answer. These results suggest that handwriting

mathematics is preferred to the use of a keyboard.

107



CHAPTER 6: EVALUATION AND TESTING

Figure 6.8: Statement: I find it easier to handwrite mathematics than writing it using

a keyboard

The opinions of the users about the statement “Input using a pen is more precise than

using the fingers” are presented in figure 6.9. 2 (25%) users strongly agree with the

statement; 3 (38%) do agree with it; 1 (13%) disagrees; 1 (13%) strongly disagrees; 1

(13%) user is neutral. From these results it can be concluded that pen input is seen as

more precise than the use of touch.

Figure 6.9: Statement: Input using a pen is more precise than using the fingers

6.3 Evaluation by Students

The main purpose of this part is to determine whether students find the features pro-

posed useful for learning, to check which features are most useful, and gather sugges-

tions for improvement. The test is also designed to determine a relation between the

students’ liking of the calculational method and their opinion about the product.

108



CHAPTER 6: EVALUATION AND TESTING

Problem Statements:

1. Do students think that the software is useful for learning?

2. Which features did the students find more useful? What is the opinion of the

students about some of the features (in particular, gestures, interaction with the

teacher, and animations)?

3. Is there any relation between the students’ opinion about the calculational method

and their opinion about the software?

4. What are the students’ suggestions for improving the software?

5. What is their opinion about the technology used (pen versus touch and pen ver-

sus keyboard)?

Students profile: Students that have been exposed previously to the calculational

method in a second-year undergraduate module on program calculation.

Number of students: 74 (seventy four).

Methodology: The test consisted of a 20 minutes presentation followed by an anony-

mous questionnaire (see Appendix C). The presentation started with an introduction

to the system and an overview of its features. Also, some details about the question-

naire were given and some terms were explained to avoid confusion. In the end, the

system was used to write a calculational proof as it would be done in a lecture. The

proof demonstrated was the one presented in Appendix A.

Students did not use the software, since the main goal of the tool is to be used as a

teaching and presentation aid by teachers. The idea was to emulate the situation that

occurs more often in practice: the teacher delivers some mathematical content and

students observe and take notes.

6.3.1 Results

Do students think that the software is useful for learning?

When asked if the software helped understanding the manipulations involved in the

109



CHAPTER 6: EVALUATION AND TESTING

proof that was demonstrated, 63 (85%) students answered Yes whilst only 8 (11%) an-

swered No; 3 (4%) students did not answer. This shows that the software has definitely

helped the students understanding the steps of the proof. Figure 6.10 illustrates the

results.

Figure 6.10: Did the software help you understanding the manipulations involved?

The opinions of the students about the statement “This software can help me doing

calculations by myself” are presented in figure 6.11: 4 (5%) students strongly agree

with the statement; 46 (62%) agree; 19 (26%) are neutral whilst 5 (7%) disagree with the

statement. Clearly, most students think that the software can help them with writing

calculations. However, we cannot conclude that the software helps them with writing

proofs, since the students did not use the software.

Figure 6.11: Statement: This software can help me doing calculations by myself

In figure 6.12 the students’ opinions about the statement “This software can improve

my experience in the classroom” are presented. Most students (49 (66%)) agree with

the statement; 11 (15%) strongly agree; 10 (14%) are neutral and only 3 (4%) disagree; 1

110



CHAPTER 6: EVALUATION AND TESTING

(1%) student provided an invalid answer.

Figure 6.12: Statement: This software can improve my experience in the classroom

Regarding their opinion about the statement “This software can help me with learn-

ing calculational mathematics” the opinions are still positive: 6 (8%) students strongly

agree with the statement; 46 (62%) agree; 10 (14%) are neutral and the same number

(10 (14%)) disagree; 1 (1%) strongly disagrees and 1 (1%) provided an invalid answer.

Figure 6.13 illustrates these results. Although the majority of students say that the soft-

ware can help, there is still room for improvement.

Figure 6.13: Statement: This software can help me with learning calculational mathe-

matics.

To determine if the software is seen as useful for learning mathematics in general, stu-

dents were asked their views on the statement “This software can help me with learn-

ing general mathematics”. The results were not as positive but were still good. The

majority of students agrees with the statement: 30 (41%) agree and 7 (9%) strongly

agree; however, 27 (36%) are neutral which is a great increase compared with the pre-

111



CHAPTER 6: EVALUATION AND TESTING

vious statement; 8 (11%) disagree and 2 (3%) strongly disagree.

Figure 6.14: Statement: This software can help me with learning general mathematics

Students were also asked if they would have used the software if it became available

during their attendance at the Program Calculus course (a course involving calcula-

tional mathematics). The results are illustrated in figure 6.15. The great majority of

students answered Yes (65 (88%)); only 7 (9%) answered No; 1 (1%) student did not an-

swer and 1 (1%) provided an invalid answer. Definitely, students found the software

useful for calculational mathematics.

Figure 6.15: If this software became available during your attendance to the Program

Calculus course, would you have used it?

When asked if they would use the software for other purposes, 38 (51%) students an-

swered Yes, 28 (38%) answered No, and 8 (11%) did not provide an answer (figure 6.16).

Students provided some suggestions for other uses: verification of proofs including

proofs from digitalised handwritten documents, for use with interactive whiteboards,

for mathematics in general, and physics.

112



CHAPTER 6: EVALUATION AND TESTING

Figure 6.16: Would you use this software for anything else?

Which features did the students find more useful? What is the opinion of the stu-

dents about some of the features (gestures, interaction with the teacher, and anima-

tions)?

Although the ability to communicate with the teacher’s computer is not a feature pro-

vided by the software developed by the author, students were asked their opinion

about it. The goal was to assess if the belief of the author that the feature is useful

was true. Students were asked to comment on the statement “Being able to send an-

swers from my computer to the teacher’s makes it easier to participate in the lectures”.

Figure 6.17 shows the results: 31 (42%) students strongly agree with the statement; 28

(38%) agree; 12 (16%) students are neutral and 3 disagree (4%).

Figure 6.17: Statement: Being able to send answers from my computer to the teacher’s

makes it easier to participate in the lectures

They were also asked to give their opinion about the statement “Being able to send an-

swers from my computer to the teacher’s makes the lectures more interactive” (figure

6.18): 40 (54%) students strongly agree, 24 (32%) agree, 8 (11%) are neutral, and 2 (3%)

113



CHAPTER 6: EVALUATION AND TESTING

disagree.

Thus, it is safe to conclude that the ability for the students to send their answers directly

to the teacher’s computer during the lecture is considered useful.

Figure 6.18: Statement: Being able to send answers from my computer to the teacher’s

makes the lectures more interactive

Questions about the animations feature were also included — during the presentation,

the animation for the distributivity rule was shown. Students were first asked if they

think that animations would be useful to understand better how algebraic rules are

applied. Clearly students see animations as useful since 68 (92%) answered Yes while

only 6 (8%) answered No. Figure 6.19 shows these results.

Figure 6.19: Do you think animations would be useful to understand better how alge-

braic rules are applied?

Regarding the addition of play/pause features to the animations (figure 6.20), 69 (93%)

students thought it would be useful and only 5 (7%) thought contrary.

Students were also asked their opinion about the statement “Gestures are a good way

114



CHAPTER 6: EVALUATION AND TESTING

Figure 6.20: Do you think that play/pause features for the animations would be use-

ful?

to trigger actions”. Figure 6.21 presents the results: 27 (36%) strongly agree with the

statement; 43 (58%) agree; 3 (4%) are neutral and 1 (1%) disagrees. Thus, it can be

concluded that students find gestures good as a trigger for actions.

Figure 6.21: Statement: Gestures are a good way to trigger actions

Finally, they were asked to provide their views on the statement “The gestures used

during the presentation are adequate to the operations to which they are associated”:

19 (26%) strongly agree; 38 (51%) agree with the statement; 14 (19%) are neutral and 3

(4%) disagree. These results suggest that gestures used to trigger the operations used

in the presentation (selection, copy, Leibniz, and distributivity) are adequate. Figure

6.22 illustrates the results.

Regarding what they liked the most about the software, the most popular answers were

simplicity, use of gestures to apply rules, ease to learn, recognition of handwriting,

application of rules, interactivity, animations, the gesture for distributivity and hand-

written input. Students also indicated the avoidance of repetitive writing, reduction

115



CHAPTER 6: EVALUATION AND TESTING

Figure 6.22: Statement: The gestures used during the presentation are adequate to the

operations to which they are associated

of human errors in proofs, manipulation of expressions, the automatisation of steps in

proofs, and the possibility of having several computers following the lecture in real-

time.

Students were also asked to point out what they disliked the most about the software.

The most popular answers were the graphical interface, the use of menus, the software

being oriented to pen-based devices (since most students don’t own one), and slowness

of animations.

Is there any relation between the students’ opinion about the calculational method

and their opinion about the software?

To answer this question, the average of the answers of each student for questions 5

(five) to 9 (nine) was calculated5 and the result was combined with their opinion about

the calculational method. This result indicates that 27 (36%) students have a positive

opinion about the calculational method and the software; 1 (1%) student has a positive

opinion about the calculational method but was negative about the software; 2 (3%)

have a positive opinion about the method but are neutral regarding the software; 4 (5%)

have a negative opinion about the method but are positive about the software; 1 (1%)

has a negative opinion about both the method and the software; 36 (49%) have a neutral

opinion about the method and a positive opinion about the software; finally, 3 (4%)

have a neutral opinion about the method and a negative opinion about the software.

Figure 6.23 illustrates these results. From these results it is not possible to draw a

conclusion — given that the majority of users that liked the software have a neutral

5The average gives an indication of the students’ opinion about the software.

116



CHAPTER 6: EVALUATION AND TESTING

opinion about the method.

Figure 6.23: Relation between the students’ opinion about the calculational method

and the software (method,software)

What are the students’ suggestions for improving the software?

The students’ suggestions include improving animations, connection with theorem

provers, replay feature for sessions, gesture to add/remove brackets, clickable list of

rules, suggestion of applicable rules, possibility to hide and expand steps in proofs,

improve appearance of the interface, and further develop the system so that students

can receive support from the teacher when away (including chat/video calls).

What is their opinion about the technology used (pen versus touch and pen versus

keyboard)?

In figure 6.24 the students’ opinions about the statement “I find it easier to handwrite

mathematics than writing it using a keyboard” are presented: 49 (66%) have a strong

preference for handwriting mathematics; 16 (22%) students have a preference for hand-

writing mathematics; 7 (9%) students have no preference; 2 (3%) have a preference for

using a keyboard and 1 (13%) strongly prefers the use of a keyboard. These results

clearly show that handwriting mathematics is preferred to the use of a keyboard.

The opinions of the students about the statement “Input using a pen is more precise

than using the fingers” are presented in figure 6.24. 37 (50%) students strongly agree

with the statement; 25 (34%) do agree with it; 11 (15%) students are neutral; 1 (1%)

disagrees. From these results it can be concluded that pen input is regarded as more

precise than the use of touch.

117



CHAPTER 6: EVALUATION AND TESTING

Figure 6.24: Statement: I find it easier to handwrite mathematics than writing it using

a keyboard

Figure 6.25: Input using a pen is more precise than using the fingers

118



CHAPTER 6: EVALUATION AND TESTING

Figure 6.26: Sample 1: Line division (algorithm 1)

6.4 Testing the line division algorithm

The last task that the teachers had to perform using the tool was to provide two hand-

written samples (see task 3, Appendix A). The samples were used to test the line divi-

sion algorithm (algorithm 1, page 42) against the Microsoft’s Ink.Divider. The algorithm

1 clearly outperformed the Ink.Divider.

For the first mathematical text, the Ink.Divider returned the wrong division for every

single sample; algorithm 1 returned 5 (five) correct and 3 (three) incorrect results. The

incorrect results are due to a mismatch between the users’ handwriting and the ex-

pected input format. The algorithm assumes that strokes from one line do not inter-

sect the bounding box of another line. If the users knew this beforehand, the results

would probably be better. However, users were not informed of this assumption since

it would influence their samples and the intention was to test both algorithms with the

users’ usual handwriting.

The following images show some of the samples given by the users. Each colour rep-

resents a line as detected by the division algorithms. For algorithm 1, dotted lines are

also used to show the bounding box of each line.

In figure 6.26, the result obtained by the algorithm 1 for that particular sample is shown.

The user provided a very neat input resulting in a correct division. Clearly, there are no

intersections between lines and strokes that are part of the same line are clearly aligned.

119



CHAPTER 6: EVALUATION AND TESTING

Figure 6.27: Sample 1: Line division (Ink.Divider)

However, the Ink.Divider did not provide the correct division because the command

“do” was considered part of the line below (see figure 6.27). Even though the hand-

writing is neat, the Ink.Divider was uncapable of determining the right result.

Figure 6.28 shows the line division returned by algorithm 1 for a second sample. In

this case, the division is incorrect. The reason is the clear intersection between lines as

shown in figure 6.29 (red lines show where the intersections occur). The algorithm de-

termines iteratively which strokes intersect the current bounding box of the line; every

time a new stroke is detected, it is added to the current line and the new bounding box

(including the newly added strokes) is used for another iteration. For this sample, the

commas of the second line force the inclusion of the last curly bracket of the follow-

ing line (given that they intersect vertically, i.e, they have ’y’ coordinates in common);

as the bounding box is extended to include this curly bracket, the following iteration

captures all the strokes that are part of the third line; at this point, the leftmost ’g’ is

included in the current line and forces the capture of the ’d’ in the fourth line, which, in

turn, captures the ’o’. In the end, what should have been returned as second, third and

fourth lines, is now part of one single line. Lines six and seven are also considered part

of the same line because the symbol ’2’ intersects vertically the last ’m’ of the following

line.

Regarding the second mathematical text, the Ink.Divider returned 1 (one) correct result

and 7 (seven) wrong; algorithm 1 got 7 (seven) correct results and only 1 (one) wrong

120



CHAPTER 6: EVALUATION AND TESTING

Figure 6.28: Sample 2: Line division (algorithm 1)

Figure 6.29: Sample 2: Line division (algorithm 1) – intersecting lines

121



CHAPTER 6: EVALUATION AND TESTING

Figure 6.30: Sample 3: Line division (Ink.Divider)

Figure 6.31: Sample 3: Line division (algorithm 1)

division.

In figure 6.30, a division done by the Ink.Divider is shown. The result is incorrect be-

cause ’A’, ’B’, and ’C’ are seen as part of the same line. It looks as though the algorithm

found a vertical pattern and assumed there was a vertical line.

On the other hand, algorithm 1 returned the correct division (figure 6.31). Clearly there

are no intersections between lines and the algorithm behaves as expected.

However, algorithm 1 failed for the sample presented in figure 6.32. Again, the problem

was the vertical intersection between lines: the left curly bracket in red intersects ’A’

and the right curly bracket in blue intersects ’B’ and ’C’.

122



CHAPTER 6: EVALUATION AND TESTING

Figure 6.32: Sample 4: Line division (algorithm 1)

6.5 Conclusions

The tests were designed so that teachers would experiment with the software as a

teaching tool and the students would experience it as a learning tool. Students did

not use the software, since the main goal of the tool is to be used as a teaching and

presentation aid by teachers. The idea was to emulate the situation that occurs more

often in practice: the teacher delivers some mathematical content and students observe

and take notes.

The results obtained seem to indicate that the software is both usable and suitable for

its purpose. They also indicate that the features are not immediately easy to use but be-

come easy with little practice. Also, teachers find the software useful for teaching and

students find it useful for learning. However, there are still improvements to be made,

as 11 (eleven) students out of 74 (seventy four) — 15% of students — found the system

unhelpful for learning calculational mathematics. Possibly, a better user interface could

improve these results. The use of gestures to trigger actions was well received by both

teachers and students as well as the animations. It also became clear that the features

are seen as useful for purposes other than teaching calculational mathematics. The use

of handwritten input is preferred by most teachers/students and pen input is regarded

by most as more precise than input by touch.

Regarding the line division algorithm, the results show that, for the samples provided,

the algorithm 1 outperforms the Ink.Divider. Although the results are very poor using

the Ink.Divider, its accuracy can possibly be improved by adapting its default Recog-

nizerContext to calculational mathematics6. However, since the goal of this project was

not centered on recognition, the author preferred to use algorithm 1 for its simplicity

6The RecognizerContext contains a factoid property that provides context information for ink within a

particular field.

123



CHAPTER 6: EVALUATION AND TESTING

and reasonable level of accuracy.

124



CHAPTER 7

Discussion and conclusions

The objective of this project was to design a structure editor of handwritten mathemat-

ics oriented to Tablet PCs. The motivation was that such a system would help with

teaching the mathematics used in algorithmic problem solving and, in general, with

presentations containing mathematical content. This would be achieved by providing

facilities to manipulate the structure of mathematical expressions and by providing

features that could facilitate the process of doing mathematics. In particular, one of

the goals was to give special attention to features that could show the dynamics of the

symbols involved in mathematical calculations. Towards these goals, a library that pro-

vides these features was created. The library was used to extend an existing editor and,

based on the results presented in chapter 6, the result seems to be an improvement on

what was available before and can improve the experience of both the teacher and the

students in the classroom.

The novelty of the results of this project is centered on the structured representation

of handwritten mathematical expressions which, in turn, makes it possible to imple-

ment other novel features like structured selection and the manipulation of handwrit-

ten mathematical expressions. The emphasis on using gestures to apply algebraic rules

is also new (although other systems support gestures to, for example, evaluate mathe-

matical expressions, these systems are not concerned with the process of writing proofs

or algorithms). Other results are also important and add genericity to the system: the

possibility to add and edit operators in runtime is useful and the change of associations

between gestures and actions (also in runtime) is a novelty as well (to the best of the

author’s knowledge). Furthermore, the creation of handwritten templates is also new

and valuable in an environment where recognition fails often. Handwritten templates

are also useful to store complicated mathematical structures, so that the users do not

125



CHAPTER 7: DISCUSSION AND CONCLUSIONS

have to go through the recognition and parsing of the structure every time they need

to use those.

However, the library has still some problems that need to be addressed. Although not

an integral part of the library, the recognition of the handwritten mathematical expres-

sions was a major problem throughout this project and remains an issue that needs

to be solved to make the library usable in real teaching scenarios. Without a good

recogniser, the recognition of mathematical expressions takes a long time to complete

and is very inaccurate, which is a serious limitation in terms of usability. In fact, the

recognition is a major handicap of the usability of the MST library in real-life situations.

However, after the steps of recognition and parsing are done successfully, the features

of the library can be used without problems. If the users are not interested in recognis-

ing mathematics during the presentations, and prepare the material before the lectures,

the system becomes quite usable.

The lack of a suitable recogniser was also a problem throughout the development of

the library, since it made it more time-consuming to test the features and develop new

ones. The library had to be reorganised to allow the continuation of the project without

a suitable recogniser. Although it was never a goal of the project, a recogniser could

have been created. However, due to time restrictions, it was not possible to create one.

Nevertheless, an attempt was made to improve the recognition module of the system.

In May 2009, an 8-month project was started in Portugal with the aim of adapting one

of the existing recognisers (more precisely, the recogniser within the StarPad system) to

the needs of the library. However, no improved results were obtained and the problem

remained the same. This attempt was made in the context of the MathIS project [mat09],

which aims to exploit the dynamics of algorithmic problem solving and calculational

reasoning in both maths education and the practice of software engineering. The MST

library was also created in the context of the MathIS project and it has contributed to

its goals by providing features that can help with teaching in mathematics education.

More information on the MathIS project is presented in [FM09] and [FMBB09].

To conclude the discussion on the recognition problems, it has to be mentioned that

there may exist proprietary recognisers that perform better than the recogniser used

during the development of this project. However, the author found little interest from

owners of proprietary mathematics recognisers in allowing access to their recognition

engines. Maplesoft was the only company that gave access to a recogniser; their recog-

niser was used throughout the development process. However, without support and

126



CHAPTER 7: DISCUSSION AND CONCLUSIONS

documentation for the system, it was not possible to make it perform well and accord-

ing to the needs of the MST library.

Although the author has tested the system with many examples throughout the de-

velopment, and some tests were done with teachers and students, the library can still

benefit from more thorough studies. Nevertheless, the feedback received for this work

as it currently stands was positive and the suggestions gathered can be used for future

improvement.

During the development of the library, the features were tested by the author of this

work through a demo system that served to try concepts like the structure and the use

of gestures. However, this demo was far from being usable in real teaching situations.

In 2009, the author of this work learnt about the existence of the Classroom Presenter

and, as it contains features that point in the same direction of the MST library (i.e, it

also explores the use of Tablet PCs in the classroom), from this point in time, the idea of

providing a class library made even more sense. At this stage, the focus of the project

became solely the library (the demo was only used as a test-bed for concepts and was

abandoned later). With the integration of the MST library into the Classroom Presenter, it

became clear that the library is usable within other tools and that its features can have

a positive impact on the teachers’ and students’ experiences. Moreover, the result of

this integration shows that most of the initial goals of this project were achieved: the

extended Classroom Presenter consists, effectively, of a structure editor of handwritten

mathematics. Also, it was at this point that it became possible to do some testing with

users and targeted audience.

Finally, another problem is the likely existence of programming errors. Further testing

can help with detecting and fixing some of them. This project was done and tested for

programming errors by only one person and it was done within a small theory research

group. The lack of expertise in the area within the group made it more complicated to

achieve a more mature tool. It should be noted, however, that it was never the goal of

this project to provide a professional tool. The goal was to create a prototype that can

be used as a base to develop a professional system.

Although there are limitations in the current system, it can still help improve the ex-

perience of teaching and learning mathematics, particularly calculational mathematics.

Based on the tests performed, the features provided seem to be useful for both teachers

and students. Most of the ideas implemented by the library came from real teaching

experience from the supervisor and the author of this project, and also from teaching

127



CHAPTER 7: DISCUSSION AND CONCLUSIONS

studies in which the author has participated (for example, [FM09] and [FMC+11]).

7.1 Current system

As mentioned in section 1.3, one of the goals of this project is to provide support for

some of the teaching scenarios for algorithmic problem solving presented in [Fer10].

In chapter 1, it was shown how the features developed could help with the Scenario

1 shown in [Fer10]. Particularly important in that example was the accurate copy of

expressions and the manipulation rules for distributivity and symmetry. Moreover,

in chapter 5, it was shown how the features could assist with the manipulation of an

algorithm. The algorithm used was Euclid’s algorithm, which is the main object of

study in Scenario 11 of [Fer10]. In that scenario, there is a proof of a theorem that is

particularly useful to demonstrate the manipulation rules provided by the MST library,

because it depends on the accurate copy of expressions, on Leibniz, on addition and

deletion of brackets, on grouping of expressions, and on the distributivity rule. That

proof is used in Appendix D to demonstrate how the current system can be used to do

mathematics.

7.2 Future work

In this section some suggestions of work that could be done to improve the MST library

are given. The section ends with ideas to improve the extended version of the Classroom

Presenter described in chapter 5.

7.2.1 Improve reliability and usability

The reliability and usability of the current system still have room for improvement.

Although the main usability problem of the library is related with recognition of hand-

written mathematics, and even though the library was created to be adaptable to users

preferences and needs, there are still some features that could possibly be improved.

Also, some of the features provided could be made more reliable. The following para-

graphs provide more details.

128



CHAPTER 7: DISCUSSION AND CONCLUSIONS

Improve the search for nodes: As it was mentioned in section 4.7.1, the search method

for finding a node given a point, has a feature that, in case the point is in between two

nodes, the nearest node is returned. This feature is useful since characters like the dot

can be difficult to target with a pen, resulting in taps around its bounding box. How-

ever, this feature is implemented only for expressions written in one line. Supporting it

for expressions written in more than one line is more challenging, because from a node

there is direct access to its two neighbours (left and right), but not necessarily to the

one that is spatially situated above it. This makes it more difficult to find the nearest

node to a point that is situated between two lines. Nevertheless, it would be desirable

to have this feature implemented.

Correct division of characters with strokes that do not intersect: The current system

is unable to detect which strokes form the same unit when the strokes that compose

the unit do not intersect. For instance, when writing the assignment symbol (:=), as

the strokes that form this symbol do not intersect, they are seen as separate units which

is a problem when parsing the expressions. So that the system works well, the user has

to be sure that the strokes intersect, which can be very inconvenient. For this reason,

the division of strokes should be improved to detect that strokes that are close together

make part of the same symbol. This would improve the usability and reliability of the

system.

Improve the user templates: The current system provides an experimental and prim-

itive mechanism for user-defined handwritten templates. This feature was created at

a late stage of the project and resulted from the difficulty in recognising more com-

plicated structures (due to the poor recognition support). It turned out to be a very

useful feature and a more mature version of the current implementation could im-

prove substantially the usability of the system (at least, until a good recogniser be-

comes available). A direction to improve this feature is to extend it with some of the

Math∫pad ideas. For example, in certain situations, it would be good to change a tem-

plate and have the changes reflected in the presentation. Also, as mentioned in section

4.7.2, a further direction is to unify the mechanism for user-defined characters with the

one for handwritten templates, since the idea behind both mechanisms is similar.

Ink adjustment: In a system where ink can be written freely, it is difficult to determine

how the content on the screen is divided. Consequently, it may be difficult to adjust

129



CHAPTER 7: DISCUSSION AND CONCLUSIONS

the content when new input is added. For instance, when Leibniz is used, the size

of the expression may change. Because of the change in size, overlapping of content

may occur or too much empty space may be left. For this reason, the current system

moves the ink in the line where the manipulation occurred, forwards or backwards, to

adapt the previous content to the new one. Currently, this change consists in moving

all the ink on the right and in the same line. However, since lines are being defined

as y-coordinate ranges, the change can inadvertently affect structures that are written

in more than one line. Therefore, the algorithms that do the ink adjustment could be

improved.

More usable proof-format: Although the proof format can be saved as a template

and used at anytime to write proofs, its current form is not very usable. If one saves

the proof format as a template and wants to use as a hint an expression that is already

on the screen, they just have to select it and use Leibniz to substitute the hint’s space

by the expression. However, if new content is to be inserted in the hint, the easier

choice the user has is to write the content somewhere else on the screen, recognise

and create its structure, use Leibniz to put it in the hint’s space, and then delete the

original version of the content. It would be much easier if the system could detect that

the user was going to write an hint in the hint’s space, and use that input to update

internally the hint’s content. At the same time, it would be useful if the closing bracket

of the hint would move according to the space that the user needs (as it happens in the

quantifier example presented in section 4.11.2). A version with these improvements

would certainly be more usable than the current one.

Animations: As shown by the tests results, animations are seen as useful and could be

improved by adding pause, step-forward, step-back or slow-down features. Also, the

current list of moves for some of the manipulation rules could improve (for instance,

in a swap, some parts of the animation overlap, as seen in figure 4.18).

Gestures: It would be interesting if the gestures editor provided with the MST library

allowed the addition of custom gestures. This could perhaps be achieved by using

Siger, the Simple Gesture Recognition library. For more details about this library, see

[sig05].

130



CHAPTER 7: DISCUSSION AND CONCLUSIONS

7.2.2 Improve the recognition of handwritten mathematics

Probabilistic graphical models: As the library would be more usable if a suitable

recogniser was available, one of the next developments could be a recogniser that

works well for the notation used in algorithmic problem solving. A possible direction

would be to extend an existing symbol recogniser with a probabilistic graphical model

that embeds the information needed for the recognition of the mathematics used in

algorithmic problem solving.

Training the recogniser: A recogniser capable of being trained to a particular hand-

writing would improve the recognition process. Moreover, the system could save prob-

abilistic information according to the kind of mathematical patterns written by the user,

and use these probabilities to improve the recognition. These probabilities could be

used, for instance, to adapt the probabilities used in a probabilistic graphical model

according to the current user.

7.2.3 Incorporate feedback and further testing

Although some tests were performed, the library could benefit from more testing and

educational studies. Moreover, the ideas and improvements suggested during testing

can now be used to improve the library.

The most relevant suggestions during testing were:

• when selecting expressions, show all the sub-expressions that can be selected;

• add ability to show the syntax tree of expressions;

• make “invisible” grouping visible by using colours;

• add more icons to the menu for actions that are currently only available in a sub-

menu;

• add ability to select and move text;

• link gestures to a sequence of actions;

• use auto-complete for some structures;

• connection with theorem provers;

131



CHAPTER 7: DISCUSSION AND CONCLUSIONS

• replay feature for sessions;

• show list of applicable rules;

• hide and expand steps in proofs;

• improve appearance of the user interface;

• further develop the system so that support can be given online (including chat

and video calls).

7.2.4 Improve the extended Classroom Presenter

The extension done to Classroom Presenter described in chapter 5 resulted in a prototype

that can animate the features of the MST library. The following ideas could improve the

prototype and are worth considering:

• improve how manipulations and animations are shown on the students’ side;

• remove flickering from animations;

• extend the undo/redo functions to work with the manipulation rules;

• allow changing the colour of expressions (currently, strokes can be written in dif-

ferent colours but, after being drawn, their colour cannot be changed); this feature

would be useful for teaching;

7.2.5 Summary

The current version of the library could be further improved in many aspects. How-

ever, as it currently stands, it already provides novel features that are regarded as useful

for teaching and learning. As such, it does what it was intended to: it provides new

concepts for dealing with mathematical content and presenting it to an audience. It is

hoped that this work will serve as a basis for a professional system that delivers all the

facilities for both teaching and learning algorithmic problem solving.

132



Definitions

Below, definitions of important terms that are assumed to be known (and are not de-

fined within the body of the thesis) are presented.

Ink In this thesis, the term ink refers to digital ink. Digital ink is a digital representa-

tion of handwriting in its natural form. In a typical digital ink system, a digitizer

is laid under or over an LCD screen to create an electromagnetic field that can

capture the movement of a special-purpose pen, or stylus, and record the move-

ment on the LCD screen. The effect is like writing on paper with liquid ink. The

recorded handwriting can then be saved as handwriting or converted to type-

written text using handwriting recognition technology.

Stroke a trace of ink in handwriting. For example, the strokes of a letter are the lines

that make it up.

Bounding box in this thesis, bounding box refers to the smallest rectangle that contains

a given set of objects. For example, given a set of strokes S, the bounding box of

S is the smallest rectangle that contains all the strokes of S. Other names for the

same concept are minimum bounding box, minimum bounding rectangle and enclosing

box.

Slide in thesis, slide is used to refer to a page within a presentation. Sometimes the

term structured slide is used to denote a slide that contains or can contain struc-

tured mathematical expressions.

Form (sometimes used as Windows Form) Form is the name used for window in the

graphical API included as part of Microsoft .NET Framework. Forms are the base

units of graphical applications built in the .NET framework.

Point the term point is used to refer to an entity that has a location in a two dimen-

sional space (that is, has an x and a y-coordinate), but has no extent (its height

and width are zero).

133



References

[AAHW04] Richard Anderson, Ruth Anderson, Crystal Hoyer, and Steve Wolfman. A

study of digital ink in lecture presentation. In CHI 2004, pages 567–574,

2004.

[AAS+] Richard Anderson, Ruth Anderson, Beth Simon, Steve Wolfman, Tammy

VanDeGrift, and Ken Yasuhara. Experiences with a Tablet PC based lec-

ture presentation system in computer science courses. In SIGCSE 2004.

[ant12] Antlr parser generator (website). URL: http://www.antlr.org, 2012.

[Last accessed: 15 April 2012].

[Bac01] Roland Backhouse. Mathematics and programming. A revolution in the

art of effective reasoning. Inaugural lecture, School of Computer Science

and IT, University of Nottingham, October 2001.

[Bac03] Roland Backhouse. Program Construction. John Wiley and Sons, Inc., 2003.

[Bac11] Roland Backhouse. Algorithmic Problem Solving. John Wiley and Sons, Inc.,

2011.

[BH93] R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of

datatypes. In B. Möller, H. Partsch, and S. Schuman, editors, Formal Pro-

gram Development, volume 755 of Lecture Notes in Computer Science, pages

7–42. Springer Verlag, 1993.

[BM97] R. Bird and O. Moor. The Algebra of Programming. Series in Computer

Science. Prentice Hall, 1997.

[BV97] Roland Backhouse and Richard Verhoeven. Math∫pad: A system for on-

line preparation of mathematical documents. Software–Concepts and Tools,

pages 80–89, 1997.

134

http://www.antlr.org


REFERENCES

[BZW+09] Andrew Bragdon, Robert Zeleznik, Brian Williamson, Timothy Miller,

and Joseph J. LaViola, Jr. GestureBar: improving the approachability of

gesture-based interfaces. In CHI ’09: Proceedings of the 27th international

conference on Human factors in computing systems, pages 2269–2278, New

York, NY, USA, 2009. ACM.

[cit12] Caltech interface tools. Available from the author’s website. URL: http://

www.ics.uci.edu/~arvo/software.html, 2012. [Last accessed: 15 April

2012].

[Cro08] Jamie Cromack. Technology and learning-centered education: Research-

based support for how the Tablet PC embodies the seven principles of

good practice in undergraduate education. In 38th ASEE/IEEE Frontiers in

Education Conference. IEEE, 2008.

[cyg12] Cygwin (website). URL: http://www.cygwin.com, 2012. [Last accessed:

15 April 2012].

[det12] Detexify - latex symbol classifier (website). URL: http://detexify.

kirelabs.org/classify.html, 2012. [Last accessed: 15 April 2012].

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DS90] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.

Springer Verlag, NY, 1990.

[Fer10] João F. Ferreira. Principles and Applications of Algorithmic Problem Solving.

PhD thesis, School of Computer Science, University of Nottingham, Not-

tingham, UK, November 2010.

[ffe05] The freehand formula entry system (website). URL: http://www.cs.

queensu.ca/drl/ffes/, 2005. [Last accessed: 15 April 2012].

[Fit04] Thomas J. Fitzgerald. The Tablet PC takes its place in the class-

room. New York Times. URL: http://www.nytimes.com/2004/09/09/

technology/circuits/09jott.html, 2004. [Last accessed: 15 April 2012].

[FKS03] Mitsushi Fujimoto, Toshihiro Kanahori, and Masakazu Suzuki. In-

fty editor – a mathematics typesetting tool with a handwriting inter-

face and graphical front-end to OpenXM servers. Available from www.

inftyproject.org/files/2003_RIMS_Fujimoto.pdf, 2003.

135

http://www.ics.uci.edu/~arvo/software.html
http://www.ics.uci.edu/~arvo/software.html
http://www.cygwin.com
http://detexify.kirelabs.org/classify.html
http://detexify.kirelabs.org/classify.html
http://www.cs.queensu.ca/drl/ffes/
http://www.cs.queensu.ca/drl/ffes/
http://www.nytimes.com/2004/09/09/technology/circuits/09jott.html
http://www.nytimes.com/2004/09/09/technology/circuits/09jott.html
www.inftyproject.org/files/2003_RIMS_Fujimoto.pdf
www.inftyproject.org/files/2003_RIMS_Fujimoto.pdf


REFERENCES

[FM09] João F. Ferreira and Alexandra Mendes. Student’s feedback on teaching

mathematics through the calculational method. In 39th ASEE/IEEE Fron-

tiers in Education Conference. IEEE, 2009.

[FMBB09] João F. Ferreira, Alexandra Mendes, Roland Backhouse, and Luís S. Bar-

bosa. Which mathematics for the information society? In Teaching Formal

Methods, volume 5846 of Lecture Notes in Computer Science, pages 39–56.

2009.

[FMC+11] João F. Ferreira, Alexandra Mendes, Alcino Cunha, Carlos Baquero, Paulo

Silva, Luís Soares Barbosa, and J. N. Oliveira. Logic training through algo-

rithmic problem solving. In Third International Congress on Tools for Teach-

ing Logic (TICTTL), volume 6680 of LNAI, pages 62–69. Springer Verlag,

2011.

[GFvGM90] David Gries, W.H.J. Feijen, A.J.M. van Gasteren, and J. Misra. Beauty is

our Business. Springer Verlag, New York, 1990.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1995.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-

ematics: A Foundation for Computer Science. Addison-Wesley, 1994.

[GS93] David Gries and F. Schneider. A Logical Approach to Discrete Mathematics.

Springer Verlag, New York, 1993.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In ACM SIGMOD International Conference on Management of Data,

pages 47–57. ACM, 1984.

[Has08] Anne Mette Jonassen Hass. Guide to Advanced Software Testing. Artech

House, 2008.

[Htw07] Swe Myo Htwe. Lexicon Organisation and Contextual Methods For Online

Handwritten Pitman’s Shorthand Recognition. PhD thesis, School of Com-

puter Science, University of Nottingham, Nottingham, UK, 2007.

136



REFERENCES

[HYP+10] Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Ro-

denhouse, Andy Wilson, Hrvoje Benko, and Bill Buxton. Manual desk-

terity: an exploration of simultaneous pen + touch direct input. In Pro-

ceedings of the 28th of the international conference extended abstracts on Human

factors in computing systems, CHI EA ’10, pages 2793–2802, New York, NY,

USA, 2010. ACM.

[ieu12] Infty editor (website). http://www.inftyproject.org/en/software.

html, 2012. [Last accessed: 15 April 2012].

[ink08] InkML toolkit (InkMLTk) project (website). URL: http://inkmltk.

sourceforge.net, 2008. [Last accessed: 15 April 2012].

[ink11] InkML: Ink markup language, W3C recommendation (website). URL:

http://www.w3.org/TR/InkML, 2011. [Last accessed: 15 April 2012].

[jim12] Java interactive mathematical handwriting recognizer (website). URL:

http://jimhr.sourceforge.net/, 2012. [Last accessed: 15 April 2012].

[jmn11] JMathNotes (website). URL: http://page.mi.fu-berlin.de/tapia/

projects.php, 2011. [Last accessed: 15 April 2012].

[JS03] Rob Jarrett and Philip Su. Building Tablet PC Applications. Microsoft Press,

2003.

[KDS06] Levent Burak Kara, Chris M. D’Eramo, and Kenji Shimada. Pen-based

styling design of 3D geometry using concept sketches and template mod-

els. In Proceedings of the 2006 ACM symposium on Solid and physical modeling,

SPM ’06, pages 149–160, New York, NY, USA, 2006. ACM.

[LLM+08] George Labahn, Edward Lank, Scott MacLean, Mirette Marzouk, and

David Tausky. Mathbrush: A system for doing math on pen-based de-

vices. Document Analysis Systems, IAPR International Workshop on, 0:599–

606, 2008.

[LMZL08] Chuajun Li, Timothy Miller, Robert Zeleznik, and Joseph LaViola. AlgoS-

ketch: Algorithm sketching and interactive computation. In Proceedings

of the Eurographics Workshop on Sketch-Based Interfaces and Modeling 2008,

pages 175–182, 2008.

137

http://www.inftyproject.org/en/software.html
http://www.inftyproject.org/en/software.html
http://inkmltk.sourceforge.net
http://inkmltk.sourceforge.net
http://www.w3.org/TR/InkML
http://jimhr.sourceforge.net/
http://page.mi.fu-berlin.de/tapia/projects.php
http://page.mi.fu-berlin.de/tapia/projects.php


REFERENCES

[LNH+01] James Lin, Mark W. Newman, Jason I. Hong, James A. Landay, and

James A. L. Denim: An informal tool for early stage web site design.

In in Extended Abstracts of Human Factors in Computing Systems: CHI 2001,

pages 205–206, 2001.

[LREND10] Marcus Liwicki, Oleg Rostanin, Saher Mohamed El-Neklawy, and An-

dreas Dengel. Touch & write: a multi-touch table with pen-input. In

Proceedings of the 9th IAPR International Workshop on Document Analysis Sys-

tems, DAS ’10, pages 479–484, New York, NY, USA, 2010. ACM.

[LWD08] Jie Li, Danli Wang, and Guozhong Dai. A pen-based 3D role modeling

tool for children. In Zhigeng Pan, Adrian Cheok, Wolfgang Müller, and

Abdennour El Rhalibi, editors, Transactions on Edutainment I, volume 5080

of Lecture Notes in Computer Science, pages 62–73. Springer Verlag, 2008.

[LZ04] Joseph J. LaViola, Jr. and Robert C. Zeleznik. Mathpad2: a system for the

creation and exploration of mathematical sketches. In ACM SIGGRAPH

2004 Papers, SIGGRAPH ’04, pages 432–440, New York, NY, USA, 2004.

ACM.

[map12] Maplesoft - technical computing software for engineers, mathemati-

cians, scientists, instructors and students (website). URL: http://www.

maplesoft.com, 2012. [Last accessed: 15 April 2012].

[Mat99] Nicholas Matsakis. Recognition of handwritten mathematical expres-

sions. Master’s thesis, Massachusetts Institute of Technology, Cambridge,

MA, May 1999.

[mat06] MathPad2: A system for the creation and exploration of mathemati-

cal sketches (website). URL: http://www.cs.brown.edu/people/jjl/

mathpad/, 2006. [Last accessed: 15 April 2012].

[mat09] MathIS: Reinvigorating mathematics for the information society (web-

site). URL : http://twiki.di.uminho.pt/twiki/bin/view/Research/

Matisse/MathIS, 2009. [Last accessed: 15 April 2012].

[mat12] Mathpaper project (website). URL: http://pen.cs.brown.edu/

research.html#mathpaper, 2012. [Last accessed: 15 April 2012].

138

http://www.maplesoft.com
http://www.maplesoft.com
http://www.cs.brown.edu/people/jjl/mathpad/
http://www.cs.brown.edu/people/jjl/mathpad/
http://twiki.di.uminho.pt/twiki/bin/view/Research/Matisse/MathIS
http://twiki.di.uminho.pt/twiki/bin/view/Research/Matisse/MathIS
http://pen.cs.brown.edu/research.html#mathpaper
http://pen.cs.brown.edu/research.html#mathpaper


REFERENCES

[mbu12] Mathbrush: A penmath system (website). URL: https://www.scg.

uwaterloo.ca/mathbrush/index.php, 2012. [Last accessed: 15 April

2012].

[Men08] Alexandra Mendes. Work in progress: Structure editing of handwritten

mathematics. In 38th ASEE/IEEE Frontiers in Education Conference. IEEE,

2008.

[Mic12] Microsoft Surface. URL: http://www.microsoft.com/surface, 2012.

[Last accessed: 15 April 2012].

[mju12] Mathjournal, interactive journal for math (website). URL: http://www.

xthink.com/MathJournal.html, 2012. [Last accessed: 15 April 2012].

[MK04] Dirk Materlik and Ulrich Kortenkamp. Pen-based input of geometric con-

structions. In Mathematical User-Interfaces Workshop, 2004.

[mm12] MathMagic, the ultimate equation editor on the planet (website). http://

www.mathmagic.com, 2012. [Last accessed: 15 April 2012].

[mob12] Mobomath, the handwritten equation editor for calculations and tech-

nical documents (website). URL: http://www.enventra.com/products/

mobomath/overview.htm, 2012. [Last accessed: 15 April 2012].

[msw12] Math speak & write (website). URL: http://www.cs.berkeley.edu/

~fateman/msw/msw.html, 2012. [Last accessed: 15 April 2012].

[mt12] Mathtype – professional equation editor (website). URL: http://www.

chartwellyorke.com/mathtype.html, 2012. [Last accessed: 15 April

2012].

[Mur98] Kevin Murphy. A brief introduction to graphical models and bayesian

networks (website). URL: http://www.cs.ubc.ca/~murphyk/Bayes/

bayes.html, 1998. [Last accessed: 15 April 2012].

[Nam05] Tek-Jin Nam. Sketch-based rapid prototyping platform for hardware-

software integrated interactive products. In CHI ’05 extended abstracts on

Human factors in computing systems, CHI ’05, pages 1689–1692, New York,

NY, USA, 2005. ACM.

139

https://www.scg.uwaterloo.ca/mathbrush/index.php
https://www.scg.uwaterloo.ca/mathbrush/index.php
http://www.microsoft.com/surface
http://www.xthink.com/MathJournal.html
http://www.xthink.com/MathJournal.html
http://www.mathmagic.com
http://www.mathmagic.com
http://www.enventra.com/products/mobomath/overview.htm
http://www.enventra.com/products/mobomath/overview.htm
http://www.cs.berkeley.edu/~fateman/msw/msw.html
http://www.cs.berkeley.edu/~fateman/msw/msw.html
http://www.chartwellyorke.com/mathtype.html
http://www.chartwellyorke.com/mathtype.html
http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html
http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html


REFERENCES

[nlu03] Natural log: Recognizing handwritten mathematics (website). URL:

http://www.ai.mit.edu/projects/natural-log, 2003. [Last accessed:

15 April 2012].

[Oli05] Werner Oliver. Teaching mathematics: Tablet PC technology adds a

new dimension. URL: http://math.unipa.it/~grim/21_project/21_

malasya_Olivier176-181_05.pdf, 2005. Presented at Reform, Revolution

and Paradigm Shifts in Mathematics Education. The Mathematics Educa-

tion into the 21st Century Project, Universiti Teknologi Malaysia.

[Pea85] Judea Pearl. Bayesian networks: A model of self-activated memory for

evidential reasoning. In Proceedings of the 7th Conference of the Cognitive

Science Society, University of California, Irvine, pages 329–334, August 1985.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1988.

[Pol57] George Polya. How to solve it. Princeton University Press, 1957.

[ros12] Rose trees – wikipedia entry (website). URL: http://en.wikipedia.org/

wiki/Rose_Tree, 2012. [Last accessed: 15 April 2012].

[rtr12] R-trees – wikipedia entry (website). URL: http://en.wikipedia.org/

wiki/R-tree, 2012. [Last accessed: 15 April 2012].

[Rub94] Jeffrey Rubin. Handbook of Usability Testing: How to Plan, Design, and Con-

duct Effective Tests. John Wiley and Sons, Inc., 1994.

[SAHS04] Beth Simon, Ruth Anderson, Crystal Hoyer, and Jonathan Su. Prelimi-

nary experiences with a tablet pc based system to support active learning

in computer science courses. In Proceedings of the 9th annual SIGCSE confer-

ence on Innovation and technology in computer science education, ITiCSE ’04,

pages 213–217, New York, NY, USA, 2004. ACM.

[sf12] C# Spatial Index (RTree) Library (website). URL: http://sourceforge.

net/projects/cspatialindexrt, 2012. [Last accessed: 15 April 2012].

[sig05] Simple gesture recognition library (website). URL: http://msdn.

microsoft.com/en-us/library/aa480673.aspx, 2005. [Last accessed: 15

April 2012].

140

http://www.ai.mit.edu/projects/natural-log
http://math.unipa.it/~grim/21_project/21_malasya_Olivier176-181_05.pdf
http://math.unipa.it/~grim/21_project/21_malasya_Olivier176-181_05.pdf
http://en.wikipedia.org/wiki/Rose_Tree
http://en.wikipedia.org/wiki/Rose_Tree
http://en.wikipedia.org/wiki/R-tree
http://en.wikipedia.org/wiki/R-tree
http://sourceforge.net/projects/cspatialindexrt
http://sourceforge.net/projects/cspatialindexrt
http://msdn.microsoft.com/en-us/library/aa480673.aspx
http://msdn.microsoft.com/en-us/library/aa480673.aspx


REFERENCES

[Smi99] Steve Smithies. Freehand formula entry system. Master’s thesis, Com-

puter Science, University of Otago, Dunedin, New Zealand, May 1999.

Available from http://research.cs.queensu.ca/drl/ffes.

[sta12] starPad SDK (website). URL: http://pen.cs.brown.edu/starpad.html,

2012. [Last accessed: 15 April 2012].

[SW06] Elena Smirnova and Stephen Watt. A pen-based mathematical environ-

ment: Mathink. Technical Report TR-06-04, University of Western On-

tario, 2006.

[sw10] Scientific WorkPlace: the integration of LaTeX typesetting and com-

puter algebra (website). URL: http://www.sciword.demon.co.uk/

scientificworkplace.htm, 2010. [Last accessed: 15 April 2012].

[tab12] Microsoft Tablet PC SDK v1.7. http://msdn.microsoft.com/en-us/

library/ms840460.aspx, 2012. [Last accessed: 15 April 2012].

[VB99] Richard Verhoeven and Roland Backhouse. Towards tool support for pro-

gram verification and construction. In Jeanette Wing, Jim Woodcock, and

Jim Davies, editors, FM ’99 – Formal Methods, volume 1709 of Lecture Notes

in Computer Science, pages 1128–1146, September 1999.

[Ver00] Richard Verhoeven. The Design of the Math∫pad Editor. PhD thesis, Eind-

hoven University of Technology, Eindhoven, 2000.

[vG90] A. J. M. van Gasteren. On the Shape of Mathematical Arguments, volume 445

of Lecture Notes in Computer Science. Springer Verlag, 1990.

[vim12] Vim, the editor. URL: http://www.vim.org/, 2012. [Last accessed: 15

April 2012].

[vis12] Microsoft Visual Studio (website). URL: http://www.microsoft.com/

visualstudio, 2012. [Last accessed: 15 April 2012].

[WD03] Lothar Wenzel and Holger Dillner. Mathjournal - an interactive tool for

the Tablet PC. Available online at http://www.xthink.com/downloads/

MathJournal_2003.pdf, 2003.

[Zei99] Paul Zeitz. The Art and Craft of Problem Solving. John Wiley and Sons, Inc.,

1999.

141

http://research.cs.queensu.ca/drl/ffes
http://pen.cs.brown.edu/starpad.html
http://www.sciword.demon.co.uk/scientificworkplace.htm
http://www.sciword.demon.co.uk/scientificworkplace.htm
http://msdn.microsoft.com/en-us/library/ms840460.aspx
http://msdn.microsoft.com/en-us/library/ms840460.aspx
http://www.vim.org/
http://www.microsoft.com/visualstudio
http://www.microsoft.com/visualstudio
http://www.xthink.com/downloads/MathJournal_2003.pdf
http://www.xthink.com/downloads/MathJournal_2003.pdf


REFERENCES

[ZMLL08] Robert Zeleznik, Timothy Miller, Chuanjun Li, and Joseph J. Laviola, Jr.

MathPaper: Mathematical sketching with fluid support for interactive

computation. In SG ’08: Proceedings of the 9th international symposium on

Smart Graphics, pages 20–32, Berlin, Heidelberg, 2008. Springer Verlag.

142



APPENDIX A

Teachers’ Guide

Task Guide

Task 1: Writing a Proof

In this task, you will prove the following theorem:

(m×p)∇n = m∇n ⇐ p∇n = 1

The proof will start with the expression m∇n and, assuming the right-hand side of the

implication, the expression will be transformed into (m×p)∇n. Please use the calcula-

tional proof format as shown in the images below (the hints should be ommited).

The complete proof is the following:

143



APPENDIX A: TEACHERS’ GUIDE

This task consists in going through all the steps of this proof. For each step, the level

of difficulty of the actions performed is asked. Please use the scale shown to record the

difficulty you have experienced (0 corresponds to “Very difficult” whilst 4 corresponds

to “Very easy”).

To handwrite (for instance, the equals sign) the Pen mode should be used. Click the

button:

For all the other actions, use the Lasso mode. Click the button:

Step 1

Using the handwritten formula on the screen, please copy m∇n to some location on

the slide.

Start by selecting m∇n by making a double tap on ∇. You should get the following

result:

To perform the copy, use the gesture Check as in the following image:

Please try to place the copy to the left so that enough space is left to expand the formula.

The result should be:

144



APPENDIX A: TEACHERS’ GUIDE

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Copy Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 2

Copy the initial expression m∇n: select the expression by making a double tap over ∇

and use the gesture Check to copy the expression, as shown in the image:

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Copy Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 3

For the new copy, Leibniz is used to replace m by m×p. For that, select m×p (again,

double tap over ×) and use the Check gesture to substitute m by m×p. The first point

of the Check gesture has to be written over the m (as shown below):

The result should be:

145



APPENDIX A: TEACHERS’ GUIDE

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Leibniz Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 4

The next step is to replace p by p∇n. For that, select p∇n (again, double tap over ∇)

and use the Check gesture to substitute p by p∇n (Leibniz). Please remember that the

first point of the Check gesture has to be written over the p (as shown below):

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Leibniz Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 5

Add brackets to p∇n : first select the expression (double tap over ∇) then click on the

menu MathSpad → Structure manipulation → Add brackets.

The result should be:

146



APPENDIX A: TEACHERS’ GUIDE

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Add brackets Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 6

The resulting expression is copied: double tap over the last ∇ then using the gesture

Check it is copied to the next step of the calculation as shown in the image:

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Copy Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 7

Apply distributivity of × over ∇ using a semi-circle starting over the × operator and

ending over the first ∇, as shown in the image:

The result should be the following:

147



APPENDIX A: TEACHERS’ GUIDE

Distributivity Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 8

Remove the brackets surrounding the expression (m×p)∇(m×n). Select the expres-

sion including the external brackets (double tap on the first bracket) and click on the

menu MathSpad → Structure manipulation → Remove brackets.

After removing the external brackets, it is not possible to select the subexpression

(m×n)∇n, because the expression (m×p)∇(m×n) remains grouped. To proceed with

the calculation, this expression should be ungrouped. For that, select the expression

(double tap over ∇) and click on the menu MathSpad → Structure manipulation → Un-

group.

148



APPENDIX A: TEACHERS’ GUIDE

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Removing brackets Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Ungroup Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 9

Double tap over ∇ twice (to expand the selection):

then, copy using the check gesture:

Assuming that (m×n)∇n = n, replace (m×n)∇n by n. Select one n (double tap over

n); use Leibniz to substitute (gesture Check over the last ∇).

149



APPENDIX A: TEACHERS’ GUIDE

Selection Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Copy Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Leibniz Very difficult 0 — 1 — 2 — 3 — 4 Very easy

Step 10

Save all your work. Click on File → Save Deck As and name the file task1.cp3.

150



APPENDIX A: TEACHERS’ GUIDE

Animation

This task consists of applying distributivity to an expression with the animations fea-

ture on. Please go to slide 2. Go to MathSpad → Animate structure manipulations to turn

the animations on. Now, on the expression in slide 2, apply distributivity of × over ∇

with a semi-circle from × to ∇.

Task 3: Handwritten Sample

This task consists of collecting your handwritten representation of some mathematical

texts. Please create a blank deck (go to Decks → Create a Blank Whiteboard Deck). Making

sure that you are in the Pen Mode, write the mathematical text below on the blank deck.

When you are finished, please save the deck as sample.cp3 (File → Save Deck As).

{M > 0 ∧ N > 0}

m, n := M, N;

{m gcd n = M gcd N}

do

n < m → m := m − n

2

m < n → n := n − m

od

{m = n = m gcd n}

A

= { p }

B

⇐ { q }

C

Thank you for all your hard work!

151



APPENDIX B

Teachers’ Questionnaire

Questionnaire

In this test you will be given an exercise to complete using the software provided and

a questionnaire to record your opinion about the software. The task consists of a set of

predefined steps that will be given to you together with this questionnaire. The aim of

the test is to assess whether the features you have used are useful for teaching courses

that use the calculational method. We would appreciate if you could give us your

sincere opinion through this anonymous questionnaire. The information provided will

be used for the evaluation of the functionalities that you have used today. Thank you

for your participation!

About you

I am a: 2 Lecturer 2 PhD Student

2 Other. Please detail:

About the method

Have you been exposed to the calculational method before?

2 Yes 2 No

Do you like the calculational method?

2 Yes 2 Neutral 2 No

152



APPENDIX B: TEACHERS’ QUESTIONNAIRE

Do you have any experience with teaching using the calculational method?

2 Yes 2 No

About the software

In your opinion, how easy is it to complete the task using this software?

2 Very easy 2 Easy 2 Neutral 2 Difficult 2 Extremely difficult

The features provided by this software can help with teaching mathematics.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

I prefer to manipulate a formula through the structure than manually moving

the ink around to obtain the desired result.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

In task 2, you have seen an animation of the distributivity rule. Do you think

animations would be useful for teaching?

2 Yes 2 No

Do you think that play/pause features for the animations would be useful?

2 Yes 2 No

Gestures are a good way to trigger actions.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

What did you like the most about the software?

What did you dislike the most about the software?

Did you have difficulties in using this software? If your answer is yes, please

give details.

153



APPENDIX B: TEACHERS’ QUESTIONNAIRE

Do you have any suggestions on how to improve this software? If your answer

is yes, please give details.

About Tablets

I prefer to use the handwritten representation of formulae than their represen-

tation in typeset.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

I find it easier to handwrite mathematics than writing it using a keyboard.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

Input using a pen is more precise than using the fingers.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

Thank you!

154



APPENDIX C

Students’ Questionnaire

Questionnaire

The aim of today’s test is to assess whether the features that are going to be presented to

you today are useful for teaching courses that use the calculational method. We would

appreciate if you could give us your sincere opinion through this anonymous question-

naire. The information provided will be used for the evaluation of the functionalities

that were presented to you today. Thank you for your participation!

About you

Age

Degree 2 LEI 2 LCC

About the method

Have you been exposed to the calculational method before?

2 Yes 2 No

Do you like the calculational method?

2 Yes 2 Neutral 2 No

155



APPENDIX C: STUDENTS’ QUESTIONNAIRE

About the software

The example shown to you is based on symbolic manipulation. Did the soft-

ware help you understanding the manipulations involved?

2 Yes 2 No

This software can help me doing calculations by myself.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

This software can improve my experience in the classroom.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

This software can help me with learning calculational mathematics.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

This software can help me with learning general mathematics.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

Being able to send answers from my computer to the teacher’s makes it easier

to participate in the lectures.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

Being able to send answers from my computer to the teacher’s makes the lec-

tures more interactive.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

In the demo you were shown an animation. Do you think animations would

be useful to understand better how algebraic rules are applied?

2 Yes 2 No

Do you think that play/pause features for the animations would be useful?

2 Yes 2 No

Gestures are a good way to trigger actions.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

The gestures used during the presentation are adequate to the operations to

156



APPENDIX C: STUDENTS’ QUESTIONNAIRE

which they are associated.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

If this software became available during your attendance to the “Program Cal-

culus” course, would you have used it?

2 Yes 2 No

Would you use this software for anything else?

2 Yes. What for?

2 No

What did you like the most about the software presented?

What did you dislike the most about the software presented?

Do you have any suggestions on how to improve this software? If your answer

is yes, please give details.

General

I find it easier to handwrite mathematics than writing it using a keyboard

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

Input using a pen is more precise than using the fingers.

2 Strongly Agree 2 Agree 2 Neutral 2 Disagree 2 Strongly Disagree

Thank you!

157



APPENDIX D

Using the current system to write a

proof

In this section, a proof of the theorem

is presented to demonstrate how the current system can be used to do mathematics. As

the library by itself cannot be used to demonstrate the features, the extended version

of the Classroom Presenter described in chapter 5 is used.

The example shows how the system can make explicit the dynamics of the symbols

involved in mathematical calculations. The example is very detailed to facilitate the

demonstration of the dynamics involved.

Proof:

The proof shown in [Fer10] starts with the expression m∇n and, assuming the right-

hand side of the implication, transforms it into (m×p)∇n. To prove it using the tool,

the teacher starts by writing the theorem and recognising it. The next step is to copy

m∇n. For that, the teacher selects it in the theorem above and copies it using the gesture

Check. The previous image shows the selection; the next image shows the writing of the

gesture:

158



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

The result is:

Next, the hint for the next step is written. For that, the teacher selects the expression

p∇n = 1 and uses the Check gesture, once again, to copy:

Some textual justification is added as well.

In this example, the proof format is handwritten without structure. Templates for the

proof format could be used, but currently writing text in the hints is not practical. More-

over, the example demonstrates that the system is flexible, i.e. the users are not forced

to create structure for everything they write. Now, the initial expression m∇n is se-

lected and copied:

159



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

Next, the new copy is manipulated. For that, Leibniz is used to replace m by m×p. So,

m×p is selected:

and Leibniz is applied to m:

The result is:

The next step is to replace p by p∇n. The expression is selected:

160



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

and Leibniz applied:

Although the structure obtained reflects the correct precedence, the Leibniz rule does

not add any brackets. At this stage, the teacher can add brackets to p∇n to help the

students read the expression:

Brackets can also be added to m×(p∇n):

161



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

Next, the resulting expression is copied. First, the teacher selects it:

then copies it:

and, finally, distributivity is applied:

The result is the following:

162



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

The brackets surrounding the expression (m×p)∇(m×n) are removed in two steps:

After removing the two sets of brackets, it is not possible to select the subexpression

(m×n)∇n, because the expression (m×p)∇(m×n) remains grouped. To proceed with

the calculation, the teacher has to ungroup it:

163



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

After the ungroup, the three operands of ∇ are in the same level of the expression’s

tree. Now, the following step consists of replacing (m×n)∇n by n. A way to write

the hint with structure consists in copying and changing the expression (m×p)∇n =

m∇n.First, it is selected:

then, it is copied to the hint and manipulated to obtain the following (the steps of this

manipulation were omitted, as they consist of simple substitutions):

Next, the expression that was obtained in the previous step of the calculation, is se-

lected:

164



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

then, copied:

and, finally, the hint is used to replace (m×n)∇n by n:

Using Leibniz:

The final result is obtained and the proof is concluded. The complete proof is as follows:

165



APPENDIX D: USING THE CURRENT SYSTEM TO WRITE A PROOF

Although the brackets in this example could benefit from a better normalisation, the

author believes that this proof illustrates well the advantages of having a structure

editor of handwritten mathematics for teaching. Not only the steps are made easier,

but also the teacher can be sure that manipulation errors will be avoided, since the tool

will calculate the results of the manipulations for them.

166


	Titlepage
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Writing mathematics using a computer
	1.2 Calculational method
	1.3 Objectives
	1.4 An example task
	1.5 Contributions
	1.6 Structure and organisation

	2 An overview of pen/touch-based technologies and structure editing
	2.1 Structure editing
	2.2 Pen- and touch-based technologies
	2.3 Software for handwritten mathematics
	2.4 Limitations and tendencies of current technologies

	3 The functional design
	3.1 Library versus standalone editor
	3.2 Supported notations
	3.3 Typeset versus handwriting
	3.4 Handwriting recognition
	3.5 Text editing versus structure editing
	3.5.1 Basic editing operations

	3.6 Manipulation rules
	3.7 Animating manipulation rules
	3.8 Use of gestures
	3.8.1 Gestures to trigger actions

	3.9 System versus user in control
	3.10 Combined writing of mathematics and text

	4 The technical design
	4.1 Architecture
	4.2 Extendability and reusability
	4.2.1 Reusability

	4.3 Handling of strokes
	4.4 Character recogniser
	4.4.1 Bayesian network models

	4.5 Parsing recognition results
	4.5.1 Data structures for mathematical expressions
	4.5.2 Creation of structured trees

	4.6 Spatial indexing of handwritten expressions
	4.7 Structure editing
	4.7.1 Selection and copy
	4.7.2 Manipulation rules

	4.8 Animation support
	4.9 Gestures support
	4.10 Markup and binary outputs for mathematical expressions
	4.11 Experimental features
	4.11.1 Handwritten templates
	4.11.2 Automatic space adjustment


	5 Integration into external tools
	5.1 Introduction
	5.2 How to integrate the library
	5.2.1 Module Recognisers
	5.2.2 Module Parsers
	5.2.3 Module Structure
	5.2.4 Module Gestures

	5.3 An Example: Extending Classroom Presenter
	5.3.1 Technical details
	5.3.2 Conclusions


	6 Evaluation and testing
	6.1 Software evaluation
	6.2 Evaluation by Teachers
	6.2.1 Results

	6.3 Evaluation by Students
	6.3.1 Results

	6.4 Testing the line division algorithm
	6.5 Conclusions

	7 Discussion and conclusions
	7.1 Current system
	7.2 Future work
	7.2.1 Improve reliability and usability
	7.2.2 Improve the recognition of handwritten mathematics
	7.2.3 Incorporate feedback and further testing
	7.2.4 Improve the extended Classroom Presenter
	7.2.5 Summary


	Definitions
	References
	A Teachers' Guide
	B Teachers' Questionnaire
	C Students' Questionnaire
	D Using the current system to write a proof

