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ABSTRACT
We present a structure editor that aims to facilitate the presen-
tation and manipulation of handwritten mathematical expres-
sions. The editor is oriented to the calculational mathemat-
ics involved in algorithmic problem solving and it provides
features that allow reliable structure manipulation of mathe-
matical formulae, as well as flexible and interactive presen-
tations. We describe some of its most important features, in-
cluding the use of gestures to manipulate algebraic formulae,
the structured selection of expressions, definition and redefi-
nition of operators in runtime, gesture’s editor, and handwrit-
ten templates. The editor is made available in the form of a
C# class library which can be easily used to extend existing
tools. For example, we have extended Classroom Presenter,
a tool for ink-based teaching presentations and classroom in-
teraction. We have tested and evaluated the editor with target
users. The results obtained seem to indicate that the software
is usable, suitable for its purpose and a valuable contribution
to teaching and learning algorithmic problem solving.
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handwritten mathematics; structure editor; Tablet PCs;
computer science education; mathematics education;
calculational method; C# class library; gestures

ACM Classification Keywords
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General Terms
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INTRODUCTION
Students, scientists, and engineers have the need to effec-
tively communicate and present mathematical results. For
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Figure 1. MST editor in action on a Tablet PC. Selecting well-formed
sub-expressions is necessary to manipulate mathematical expressions.

that, computers are often used, but writing and presenting
mathematical content using a computer is hard. The difficulty
in writing is mainly due to the input devices commonly used:
the keyboard does not support all mathematical symbols and
the use of the mouse to click in buttons to input the sym-
bols is time-consuming. For presentations, the blackboard,
transparencies, and electronic slides are commonly used, but
these media have some limitations. For instance, although
the use of the blackboard allows interaction with the audi-
ence, it requires the presenter to write everything during the
presentation, which is time-consuming and can lead to errors.
Ordinary transparencies and electronic slides can be prepared
in advance, avoiding errors and saving time. However, they
work more like a guideline than as a medium for discussion
and interaction since it is difficult to adjust them during the
presentation. This does not encourage interactivity and, in
presentations involving mathematical content, there is often
the need to provide examples and details according to queries
and responses from the audience. Moreover, electronic slides
are usually created using the mouse and the keyboard as input
devices, and these make it hard and laborious to write docu-
ments containing mathematics.

An easier way to write and present mathematical content is
to use pen-based devices like Tablet PCs and handwrite the
desired mathematical content [8, 12, 19]. We currently use a
Tablet PC to teach algorithmic problem solving to first-year
undergraduate students and we find that it simplifies the writ-
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ing of mathematical content. Moreover, the feedback from
the students shows that they enjoy the interactivity that comes
with the use of the Tablet PC. However, because teaching al-
gorithmic problem solving involves a large number of syntac-
tic manipulations, we feel the need for a structure editor able
to reliably manipulate the non-standard mathematics that we
use.

In an attempt to combine the benefits of Tablet PCs with the
advantages of using the computer’s capabilities to manipulate
structured information reliably, we have developed a structure
editor1 named Math∫pad Tablet (MST). This editor aims to
facilitate the presentation and manipulation of mathematical
content by providing a way to input and manipulate struc-
tured handwritten mathematics, and by providing features
that contribute to flexible and interactive presentations. Fig-
ure 1 shows the editor in action. As pictured, the tool allows
the use of a stylus pen to handwrite and manipulate mathe-
matical content (like algorithms). The main audience of the
system are teachers presenting mathematical content in the
calculational style that is used, for example, in algorithmic
problem solving [2, 3, 10, 14, 22], but it can also be used in
other contexts.

The novelty of the MST editor and what distinguishes it from
existing related tools is that:

• it is the first structure editor for handwritten mathematics
oriented to the calculational mathematics involved in algo-
rithmic problem solving;

• it allows definition and redefinition of mathematical oper-
ators in runtime;

• it supports the definition of handwritten templates;

• it is developed as a C# library, which can be easily used to
extend and combine existing tools.

It is important to note that the focus of this work is on struc-
ture editing and not on handwriting recognition. In this pa-
per, we describe the context, goals, and design of the MST
editor. We discuss the integration of the editor with an ex-
isting tool, Classroom Presenter [1], and we show how it can
be used to do and teach mathematics. We show the results
of an evaluation performed with target users/audience and we
conclude with a discussion on the current issues of the system
and how we plan to develop it further.

RELATED WORK
There exist several tools and packages that are capable of
dealing with handwritten mathematics. For example, the
Freehand Formula Entry System (FFES) [20] allows the free-
hand entry and editing of formulae using a pen and a tablet.
FFES also allows the generation of LATEX from its input. An-
other existing tool is the Infty Editor [21]. This editor sup-
ports online recognition of handwritten mathematical expres-
sions and as soon as a character is written, it is automatically
rewritten as neat strokes in an appropriate position and size.
1We use the terms editor and library interchangeably to refer to the
work presented in this paper. Even though the work is available in
the form of a library, its features form a structure editor.

This editor provides output in several different formats, in-
cluding LATEX and MathML. These tools act mainly as math-
ematics input systems, while our tool aims to provide an ed-
itor for complete mathematical documents and presentations
with the ability to manipulate the mathematical structure of
the handwritten expressions.

More advanced tools are able to provide mathematical sketch-
ing, which is a pen-based approach for mathematical problem
solving. Users write mathematics and supporting diagrams
to create graphical animations that can be manipulated and
can verify the correctness of the mathematics. The concept
of mathematical sketching was first developed in the semi-
nal work of MathPad2 [17]. Another example is MathBrush
[16], which allows the handwritten input and recognition of
mathematical expressions. It allows the use of gestures to ma-
nipulate expressions and is able to evaluate them by passing
them to a computer algebra system. MathPaper [25] is an-
other tool that recognizes handwritten mathematics. It allows
free-form handwritten entry of multiple mathematical expres-
sions to provide symbolic and numerical computational as-
sistance. It uses real-time recognition and supports gestural
and widget-based interactive editing. This tool also explores
novel approaches to entering and manipulating matrices and
allows handwritten entry of mathematical algorithms. AlgoS-
ketch [18] was created in the context of the MathPaper project
and it is a pen-based algorithm sketching prototype with sup-
porting interactive computation. It allows writing and editing
of 2D handwritten mathematical expressions in the form of
pseudocode-like descriptions to support the algorithm design
and development process. MathJournal [24] is an interactive
tool for the Tablet PC that provides a natural and intuitive
environment for mathematical and engineering problem solv-
ing. The software recognizes, interprets and provides solu-
tions for handwritten or hand-drawn mathematical and engi-
neering constructions. This tool recognizes a great number of
mathematical symbols. It evaluates several kinds of mathe-
matical expressions and, given an expression, plots the corre-
sponding graph. Our work overlaps with the works described
above in that it also supports handwritten input, manipulation
of mathematical expressions, and the use of gestures. Some
of the gestures available in the MST editor are similar to the
gestures available in these tools (e.g. like in MathPad2, the
scratch-out gesture is used to erase content). However, the
default actions that we associate with gestures are defined
based on our teaching experience and on what we usually do
on the blackboard (e.g. the semi-circle is used to apply dis-
tributivity). These associations can be changed by the user at
any time using the gesture editor provided. It is important to
note that our tool also differs from these works on the empha-
sis and domain of application: while these tools emphasize
the recognition and evaluation of expressions, our focus is
on syntactic manipulation of mathematical expressions and
composition of mathematical structures, particularly applied
to the calculational method supporting algorithmic problem
solving.

Recent mathematical sketching tools that emphasize dia-
grammatic reasoning are VectorPad [5], which allows users
to write down vector mathematics and present animations
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illustrating different vector operations; SetPad [7], which
allows users to write down set expressions and presents
Venn diagrams associated with them; and SketchSet [23], a
sketch tool for Euler diagrams whose curves can be arbitrary
shapes. Finally, Hands-On Math [26] is a multi-touch and
pen-based system (running on a Microsoft Surface) which al-
lows freeform sketching and visualization of simple algebraic
expressions. Similar to SetPad and Hands-on Math, we sup-
port the selection of sub-expressions and non-trivial manipu-
lation rules like distributivity; however, a difference is that in
our tool all the results of manipulations remain handwritten,
i.e., there is no conversion to typeset. Also, to the best of our
knowledge, none of the tools described in this section support
user-definition of new mathematical operators in runtime nor
the definition of handwritten templates.

In terms of mathematical structure editors designed to be used
with keyboard and mouse, the closest work is Math∫pad [4].
In fact, the Math∫pad system has inspired the project pre-
sented in this paper. Its focus is on calculational mathemat-
ics and its ultimate goal was to provide a system that could
eliminate the use of pen and paper for the calculations of the
intended users of the system. However, that did not happen
and Math∫pad’s creators believe the main problem lies with
the interaction limitations of computers (see page 15 of [4]).
One of the goals of the MST editor is to overcome these lim-
itations.

CONTEXT AND GOALS
The MST editor was developed in the context of teaching and
research on correct-by-construction program design. More
than two decades of research in this area have created a new
discipline of algorithmic problem solving and shed light on
the underlying mathematical structures, modeling, and rea-
soning principles. Starting with the pioneering work of Di-
jkstra and Gries [10, 14], a calculational method emerged,
emphasizing the use of systematic mathematical calculation
in the design of algorithms. Exponents of the calculational
method prefer to work with uninterpreted formulae and ma-
nipulate them according to their symbols and associated rules
(the motto is: “let the symbols do the work”).

An example of a representative calculational proof is Van
Gasteren’s proof [9] of the theorem

(1) (m×p)∇n=m∇n ⇐ p∇n=1 ,

where ∇ represents the greatest common divisor. The proof
is as follows:

m∇n
= { p∇n= 1 and 1 is the unit

of multiplication }
m×(p∇n)∇ n

= { distributivity and associativity }
(m×p)∇ (m×n)∇ n

= { (m×n)∇n= n }
(m×p)∇n .

m ∇ n (initial expression)

m×p ∇ n

m× (p∇n) ∇ n (final expression)

Figure 2. Transformation of m∇n into m×(p∇n)∇n. The red sub-
expressions are replaced by the boxed expressions.

Note how each step of a calculational proof is usually ac-
companied by a hint justifying the validity of that step. Some
relevant advantages of this format are that the hints reduce the
search space, there are no repeated intermediate expressions,
and we can immediately conclude that m∇n = (m×p)∇n,
just by looking at the first and last expressions and at the re-
lations connecting them. The equality holds if the properties
used in the hints are valid, meaning that p∇n = 1 is a suf-
ficient condition. This calculational format is used in several
research communities (e.g. by researchers on functional pro-
gramming) and in teaching at many universities (e.g. a study
suggests that discrete maths students prefer and understand
calculational proofs better [11]).

Handwritten presentations of calculational proofs
The motivation for the creation of the MST editor is the need
for a software tool supporting the teaching of algorithmic
problem solving, in particular, using the calculational style.
Teaching algorithmic problem solving involves a great deal
of syntactic manipulations of uninterpreted and unconven-
tional mathematical formulae that existing tools do not sup-
port. Working with uninterpreted formulae and manipulating
them in a syntactic way requires a great deal of copy and sub-
stitution of expressions. For instance, in a handwritten pre-
sentation of the proof shown above, we would have to hand-
write the expression p∇n three times (once in the theorem
statement, once in the first hint, and once in the result of the
first step). In general, expressions can be arbitrarily large,
meaning that copying and substituting them by hand can eas-
ily result in errors. The emphasis on substitution of equals for
equals leads to proofs where each step only changes part of an
expression. For example, in the first step of the proof above,
only the first operand of ∇ is changed; in the third step, only
the second operand of the first ∇ is changed. Moreover, syn-
tactic manipulations like those on the distributivity step re-
quire a substantial mental effort from the writer as they have
to perform in their mind a sequence of steps and write down
the final result — which again, can easily result in errors.

To improve the user interaction with handwritten calcula-
tional proofs, there is the need for a structure editor providing
straightforward, flexible and reliable manipulation of mathe-
matical handwritten formulae. The editor should assist with
the process of doing mathematics and ensure that human er-
rors are less likely to be introduced. For example, a reliable
way to obtain the result of the first step of the proof above is
to copy the expression m∇n, replace the first operand by the
expression m×p, and finally, replace the p in the newly intro-
duced sub-expression by p∇n. Figure 2 illustrates the three
steps involved in this transformation.
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The MST editor supports the type of manipulations described
above, but it also considers other aspects relevant to mathe-
matical structure editors. For example, above we have chosen
the symbol ∇ to represent the greatest common divisor, be-
cause we wanted to demonstrate a common need when doing
mathematics: we often need to define and conjecture new op-
erators that satisfy certain algebraic rules. This is supported
in the MST editor because users can add and redefine oper-
ators as they wish. When using the MST editor, everything
remains handwritten even after manipulations are performed,
as it is likely that the user will further add handwritten text,
handwritten mathematical expressions, and possibly unstruc-
tured handwritten blocks (like sketches and diagrams) to the
document. It is undesirable to mix different writing and font
styles, as doing so, can make presentations confusing. Fur-
thermore, certain actions can be triggered by the use of ges-
tures, helping to make writing mathematics a continuous pro-
cess, without interruption from having to select options from
menus.

In summary, the MST editor was created to overcome some
common obstacles when using a calculational style to teach
algorithmic problem solving: i) difficulty writing mathemat-
ics in a digital format; ii) errors introduced during presenta-
tions, e.g. whilst writing calculations; iii) demonstrate the
dynamics of algorithmic problem solving — that is, work
with uninterpreted formulae and manipulate them according
to their symbols and associated rules; iv) keep the audience
engaged. To the best of our knowledge, there is no other
tool that supports calculational mathematics in an handwrit-
ten form with the facilities needed in a research and teaching
environment.

The focus of this work is on structure editing and not on
recognition of handwriting. As such, we do not discuss prob-
lems related with handwriting recognition. The editor is built
assuming that the correct recognition result is obtained and it
works independently of the recognition engine. As it is not re-
alistic to assume that a recognizer will always return the cor-
rect result, the library includes a simple editor for the recogni-
tion results. This editor allows the user to correct any errors in
the recognition results. The library can be used even without
a recognizer: if the user handwrites an expression and manu-
ally inputs the correct recognition result, the expressions will
have the correct structure. This means that all the features
still work, since they only depend on the existing structure.

THE MST EDITOR
The MST editor assists in the presentation of the dynamics of
algorithmic problem solving [2, 3, 22], by allowing straight-
forward, flexible and reliable manipulation of non-standard
mathematical expressions [13, 14]. All the relevant features
of the editor are implemented in the form of a class library
that we call MST library. The central feature of the library is
the definition of structure for handwritten mathematical ex-
pressions. This allows syntactic manipulation of the expres-
sions, making it possible to accurately select, copy and ap-
ply algebraic rules, while avoiding the introduction of errors.
To facilitate structured manipulation, we introduce gestures
to apply manipulation rules. By default, and where appli-

cable, the gestures used for each rule match the visual idea
that is usually associated with its application: for instance,
for distributivity we use a semi-circle starting at the operator
that will be distributed and ending over the operator through
which it will be distributed — this matches our visual idea
that one operator will be propagated over the other. All de-
fault gestures were chosen based on our teaching experience
and on what we usually do on the blackboard. However, the
association between gestures and rules can be customized at
anytime to suit the user’s needs. As each user is different,
fixed gestures may not be suitable for everyone.

In the context of teaching, applying an algebraic rule and ob-
taining the result instantaneously, may not be good enough.
With this in mind, the library supports the animation of cer-
tain structure manipulations. The purpose of these animations
is to show, step-by-step, how a rule is applied to an expres-
sion. We believe that this can help students understand how
the rule works.

Other features of this library include an operator editor that
allows the definition (in runtime) of operators, redefinition of
their precedences and kinds (infix, prefix, etc.), user-defined
handwritten representations of characters, handwritten tem-
plates and automatic space adjustment of some mathematical
structures.

Our class library is implemented in C# (using Microsoft’s
Tablet PC API) and it was created in a way that makes it easy
to be used and extended by other programmers2. In particu-
lar, it can evolve with new technological developments: for
instance, it is possible to change the handwritten mathemat-
ics recognizer being used3 — which is important, because the
area of handwritten recognition is still evolving.

In the following sections we provide more details about the
main features of the class library.

Mathematical Structure
Mathematical structure is very important for writing calcula-
tions. Without knowing the formulae’s structure, we can not
manipulate it. Selecting well-formed sub-expressions is nec-
essary to enable manipulations. For that reason, we provide
a reliable and simple way of selecting expressions and sub-
expressions.

Using the MST library, one can click4 in separate elements
of an expression to obtain a selection according to its struc-
ture. To illustrate how this works, consider the expression
a + b×c + d + e. A single click in any of the symbols
that form the expression, selects the symbol itself. A double-
click, however, has a different effect. If one double-clicks in
one of the variables (a, b, c or d) the selection obtained is still

2The library is organized in modules, each one supporting a main
feature of the system. It also follows certain design patterns, for
example the Strategy pattern for choosing the recognizer to be used.
3Currently, the system is based on a proprietary mathematical sym-
bol recognizer from MapleSoft.
4We use the term click to denote the action of pressing down, and
possibly releasing a button, on a pointing device. When using a
Tablet PC and a pen, we can also use the term tap.
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the character that was clicked — no other selection can be ob-
tained by clicking on a variable. However, if a double-click
is performed on an operation symbol, the selection expands.
In Figure 3, the result of a double-click on the last addition
operator is shown. Because the structure of the addition oper-
ator is known, it selects, together with the operation symbol,
the two arguments of the operator (d and e).

Figure 3. Double-click on the last addition operator.

Figures 4 and 5 show that a double-click on the first and on
the second addition operators, respectively, selects again the
addition operator together with its two arguments — but now,
one of the arguments contains more than just a variable. As
the multiplication has higher precedence than the addition, it
is selected as one of the arguments of the addition. For the
first addition symbol, if the selection was only a+ b it would
not replicate the semantics of the original expression.

Figure 4. Double-click on the first addition operator.

Figure 5. Double-click on the second addition operator.

It is possible to extend the selection by continuously click-
ing in one of the operators. For instance, if, with a + b×c
selected (as in Figure 4), one does another double-click on
the first addition, the selection is extended to a + b×c + d.
Double-clicking on the first addition again selects the whole
expression — that is, the selection is extended to contain +e.

One action that benefits heavily from this selection feature,
is the copy of expressions and sub-expressions. One way to
copy expressions using our library is to select the expression
that one wants to copy and then, while holding the side but-
ton of the pen, touch with the tip of the pen in the area of the
screen where the copy should be placed and release the but-
ton. Alternatively, a gesture can be used. Another action that
depends on the accurate selection feature is the algebraic ma-
nipulation of expressions. In the next section, we give more
details about this feature.

Structure Manipulation
One of the main goals of the library is to provide the means
to perform syntactic manipulation of mathematical formulae.
The idea is to apply rules to expressions automatically — au-
tomatically in the sense that the user does not have to deter-
mine the result of applying the rule. The main motivation be-
hind the automatic use of rules is the motto: “let the symbols
do the work”. This feature allows working with uninterpreted
formulae and manipulate them according to their symbols and
associated rules. Also, it shows the dynamics of the symbols,

avoids the introduction of syntactic errors, and requires less
effort from the user.

As an example, consider the boolean expression a∨(b∧c). As
∨ distributes over ∧, it can be useful to apply the distributivity
rule automatically to obtain (a ∨ b) ∧ (a ∨ c) . Our library
supports this type of manipulation.

Following the principles of the calculational method, our li-
brary has the general knowledge of how to apply rules but
does not know if applying a certain rule is semantically cor-
rect. Checking the validity of applying a rule is the user’s
responsibility. We want the user to be in control and not the
tool.

The main actions supported by the library are distributiv-
ity and factorization, associativity, symmetry, group and un-
group5, and substitution of equals for equals. This ensures
some of the reliability and flexibility that we want to provide.
The rules supported consist purely of syntactic manipulation
since the aim of the library is to support the calculational
method.

One novel feature of the library is that everything on the
screen remains handwritten, i.e., there is no conversion of the
handwriting to typeset. Even the results of manipulations
are handwritten. Tools like MathPaper [25] have the option
of leaving the original input handwritten; however, the result
of manipulating that input is presented in typeset. Our edi-
tor differs from that by keeping the original input and all the
results of manipulations in their handwritten form. To show
handwritten results, manipulation rules use the ink of the for-
mulae being manipulated and rearrange it as needed. If a ma-
nipulation action needs a character that is not present in the
formulae being manipulated, it will retrieve its handwritten
representation from a database of characters defined by the
user.

For most manipulation rules, gestures are used to trigger
them. In the next section, we give more details on this.

Use of gestures
Gestures are a straightforward way of triggering actions. Us-
ing a gesture instead of a menu option is quicker and less
interruptive. One of our main goals is to provide mechanisms
that interfere as little as possible with the user’s thought. For
that reason, gestures are used to perform editing tasks and to
manipulate algebraic formulae. For each action we provide
default gestures that, in our view, are intuitive for that partic-
ular task. We also provide a gesture editor that allows the user
to change the association between gestures and actions.

Examples of gestures that we have defined for editing tasks
are the circle gesture, which is used to select the content in-
side the circle, and right-down and right-up gestures, which
are used to add and remove vertical space (see Figure 6).

5The actions of grouping and ungrouping can be used to change
the precedence of operators. For example, if given a×b + c×d we
ungroup the sub-expression a×b, the first × and the + will have the
same precedence. To return to the original expression, we can group
the sub-expression a×b.
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(a) Circle. (b) Right-down. (c) Right-up.
Figure 6. Gestures for editing tasks.

To apply mathematical rules to expressions, gestures are also
used. Examples of two gestures that we use to apply the dis-
tributivity rule are depicted in Figures 7.a and 7.b. In this
case, the distributivity of boolean disjunction through con-
junction is used (a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)). In Fig-

(a) Semi-circle (b) Drag-and-drop
Figure 7. Gestures for mathematical rules.

ure 7.a, the semi-circle gesture (drawn from left to right) is
used to indicate that the disjunction is to be distributed over
conjunction. The result presented in Figure 8 is then auto-
matically obtained. Similarly, in Figure 7.b, the symbol ∨ is
selected, dragged, and then dropped over the ∧ symbol so that
the first distributes over the second. Again, the result (Figure
8) of applying the rule is automatically obtained.

Figure 8. Result of applying the distributivity rule.

Some other commonly used rules, like symmetry, have ges-
tures associated with them. We believe that the use of ges-
tures is a good way to illustrate the dynamics of the symbols
and to help the user writing calculations.

Animations of certain algebraic rules
Applying algebraic rules automatically and obtaining imme-
diately a final result is helpful while solving mathematical
problems. However, in a teaching environment, showing the
final result of applying a rule may not be enough. When one
sees a rule in action for the first time, one might need to see
how the rule works in more detail in order to understand what
it does. For that reason, we provide an option of animating
the application of rules. Animations consist in moving slowly
the several elements that form the formulae until they reach
their position in the final result. As suggested in [6] and [15],
animation and visualization techniques can improve student
learning. This confirms our belief that animations can help
the students keep track of the steps involved in the calcula-
tions.

Automatic layout adjustment
Often, while writing a document, the user has to adapt the
layout of what is already written to allow more space to keep
writing. This type of action interrupts the user’s thought. Our
library supports automatic space adjustment when the user
needs it (the current version only supports quantifiers written
in the Eindhoven notation [10]). For example, if the user is

editing the summation quantifier shown in Figure 9, the char-
acters marked in red are adjusted automatically as the user
writes inside the quantifier expression.

Figure 9. Summation quantifier.

If the user is writing near one of these characters, the expres-
sion extends automatically, relieving the user from the work
of having to adjust it manually. In the example of Figure 9,
the expression x+y+ is unfinished, so if one starts to write
the rest of the expression, the ’〉’ symbol will move to the
right, allowing space to finish it.

Handwritten templates
The MST library contains a mechanism for handwritten tem-
plates. Users are able to store expressions with structure and
use them whenever they want. These can be seen as templates
and, using substitution of equals for equals, can be composed
to obtain more complex expressions. For example, the user
may define templates for the GCL language [10] that can be
reused later, avoiding the burden of having to recognize it
again. Figure 10 shows two handwritten templates. The ex-
pressions denoted by e in the figure are placeholders that can
be replaced by other expressions. The idea is that templates
can be composed to write complex expressions/algorithms.

(a) do .. od (b) Guard
Figure 10. Two handwritten templates for the GCL language.

INTEGRATION WITH OTHER TOOLS
The MST library was designed to be easily added to other
tools. For example, we have extended Classroom Presen-
ter [1] (CP), an award-winning Tablet PC tool for ink-based
teaching presentations and classroom interaction. Although
we had no documentation about CP, we were able to use our
library and its features within this tool.We only had to import
the library and extend the user interface to allow the use of
the imported features. Thus, we believe that, given appro-
priate documentation, other programmers can easily extend
existing tools to make use of our library’s features.

Using the Extended Classroom Presenter
In this section, the proof of theorem (1) shown previously is
presented to demonstrate how the features available can be
used to do mathematics. The gestures defined by default are
used. Recall that the theorem to prove is:

(m×p)∇n = m∇n ⇐ p∇n = 1 .

The full proof starts with the expression m∇n and, assum-
ing the right-hand side of the implication, transforms it into
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(m×p)∇n. To prove it using the tool, the user starts by writ-
ing the theorem and recognizing it. The next step is to copy
m∇n. For that, the user selects it (double-clicking on the
second∇):

and copies it using the gesture Check:

The result is:

In this example, the Check gesture is overloaded. It is used
for copy and for substitution of equals for equals (also called
Leibniz rule). Next, the hint for the step is written. For that,
the user can select the expression p∇n = 1:

and use the Check gesture, once again, to copy:

The user can extend the hint with handwritten text. Next, the
initial expression m∇n is selected:

and copied:

The new copy is manipulated as shown in Figure 2. The user
starts by replacing m by m×p. So, m×p is selected:

and Leibniz is applied to m:

The result is:

After a number of steps to replace p by p∇n and add brack-
ets (omitted), we reach a point where distributivity is applied
(using the semi-circle gesture):

The result is the following:

The editor allows the user to remove the brackets surround-
ing the expression (m×p)∇(m×n) (steps omitted). After
removing the two sets of brackets, it is not possible to se-
lect the sub-expression (m×n)∇n, because the expression
(m×p)∇(m×n) remains grouped. To proceed with the cal-
culation, the user has to ungroup it. That is done by selecting
the expression:

and using the ungroup option from the menu:

Now, the following step consists of replacing (m×n)∇n by
n. Omitting the steps used to write the hint, the next step is
to select the expression that was obtained in the previous step
of the calculation:

and then, copy it:
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Finally, the hint is used to replace (m×n)∇n by n. First,
select n:

and then using Leibniz:

The final result is obtained and the proof is concluded. The
complete proof is as follows:

We believe that this proof illustrates well the advantages of
having a structure editor of handwritten mathematics for pre-
sentations. Not only the steps are made easier, but also the
user can be sure that manipulation errors will be avoided,
since the tool will perform the manipulations for them. An-
other advantage that is relevant in a teaching context is that
the use of rules is explicit. For example, to select the sub-
expression (m×n)∇n, the user is forced to ungroup the ex-
pression (m×p)∇(m×n); this corresponds to the use of as-
sociativity, which is often missed by students.

EVALUATION AND USER FEEDBACK
To gain feedback about the concept and functionality
of the MST editor, we invited computer science teach-
ers/researchers and students to trial the software. One of
the main goals was to check if the features provided were
regarded as helpful in the context of teaching using the calcu-
lational style. The extended version of CP was used for the
evaluation. The tests were designed so that teachers would
experiment with the software as a presenting tool and the stu-
dents would experience it as a learning tool. Students did
not use the software. The idea was to emulate the situation
that occurs more often in practice: the teacher delivers some
mathematical content and students observe and take notes.
Although the editor can be used by students to assist them in

the learning process, it was created with the teaching process
as a main concern, i.e. with teachers as its main target users
and students as observers.

In the teachers group there were 8 (eight) testers. These were
teachers/researchers and PhD students who have previously
been exposed to the calculational method. This group was
given a guide detailing some steps that they had to follow in
order to write a proof using the system (the one shown in the
previous section). A questionnaire was given to record their
opinion and they were observed by a monitor.

In the students group there were 74 (seventy four) second-
year undergraduate students. All students had already been
exposed to the calculational method. The test consisted of a
20-minute presentation followed by an anonymous question-
naire. The presentation started with an introduction to the
system and an overview of its features. The system was then
used to present the calculational proof shown in the previous
section as it would be done in a lecture.

The results obtained in both tests seem to indicate that the
software is both usable and suitable for its purpose. They
also indicate that the features are not immediately easy to use
but become easy with little practice.

Of particular interest is the task given to the teachers, where,
for each step, they were asked to record the level of difficulty
in using each feature involved. The results obtained clearly
indicate that the level of difficulty decreased as the users got
familiar with the software. The level of difficulty reported by
most users at the first use of each feature decreased with fur-
ther uses. The monitor noticed that during the first minutes
of the test, most users struggled to perform the tasks6. How-
ever, they soon got used to the software/pen and performed
the remainder of the test without problems.

In Table 1 the average results reported for the features used
during the task are presented7. For features that had multiple
uses, the results for the first and last use are reported. For the
remainder, the results for the first use are shown. The level of
difficulty was expressed using a scale from zero (Very easy)
to four (Very difficult).

Feature First use Last use
Selection 2.00 0.75
Copy 1.38 0.50
Leibniz 0.50 0.63
Add brackets 0.38 n/a
Distributivity 1.00 n/a
Remove brackets 0.50 n/a
Ungroup 1.00 n/a

Table 1. Level difficulty reported (0 - Very easy; 4 - Very difficult)

For the Selection and Copy features it is clear that the diffi-
culty decreased. For Leibniz, although only slightly, the level
of difficulty increased. However, it is still reported as easy
to perform. This increase can possibly be linked to the re-
spective steps of the proof: Leibniz is triggered by drawing a
6Most problems were due to the users being unfamiliar with the use
of Tablet PCs.
7The average results are rounded to two decimal places.
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check over a symbol; the first point of the hand-drawn check
symbol is used to determine which symbol should be substi-
tuted; in the last use of Leibniz the symbol to be substituted is
much smaller than in the first use making it more difficult to
target it. All the other features were regarded as easy or very
easy to use at the first attempt.

When asked how easy it was to complete the task using the
software, the average result was 0.88 meaning that, on aver-
age, the users found it easy to use the software.

The results also show that teachers find the software useful
for teaching and students find it useful for learning. For in-
stance, teachers were asked to give their opinion about the
statement “The features provided by this software can help
with teaching mathematics”. Clearly they found it useful as
5 (62.5%) of them do agree and 3 (37.5%) do strongly agree.
One of the students’ tasks was to comment on the statement
“Did the software help you understanding the manipulations
involved?”; 63 (85%) answered Yes whilst only 8 (11%) an-
swered No; 3 (4%) students did not answer. This shows that,
for this proof, the software has definitely helped them un-
derstanding the steps involved. Thus, the editor seems to be
regarded as a helpful contribution to teaching mathematics in
a calculational style. The use of gestures to trigger actions
was well received by both teachers and students. When asked
to comment the statement “Gestures are a good way to trig-
ger actions”, only one student disagreed, three students were
neutral, and the remainder of the students and all the teach-
ers agreed. We believe this result is due to the kinesthetic
nature of gestures, which helps students visualize syntactic
manipulations. When students were asked if they would use
the software for other purposes, 38 (51%) answered Yes, 28
(38%) answered No, and 8 (11%) did not provide an answer.
Some of their suggestions for other uses include verification
of proofs, mathematics in general, and physics.

Both groups were asked for suggestions for improving the
software. The suggestions included displaying the syntax
trees of expressions, linking gestures to a sequence of actions,
manipulating brackets by using gestures, connecting with the-
orem provers, adding replay feature for sessions, suggesting
applicable rules, and further developing the system so that
students can receive support from the teacher when away (in-
cluding chat/video calls).

DISCUSSION AND CONCLUSION
The use of Tablet PCs for teaching and presentations brings
many advantages. We currently use a Tablet PC to teach algo-
rithmic problem solving to first-year undergraduate students
and, according to their feedback, they enjoy the interactivity
that comes with the use of the Tablet PC. Based on the eval-
uation of the system, we believe that our library will further
improve this interactivity.

The benefits of presenting the mathematics involved in al-
gorithmic problem solving with the features provided can
be enormous. It is possible to demonstrate the dynamics of
problem-solving in a manner that improves on blackboard-
style of teaching by exploiting the reliability of computer
software in copying and manipulating structured information.

It is possible to show in real-time the steps of a calculation
and to see how the expressions are transformed from one step
to the other.

From our experience, using a Tablet PC only as a device to
write on does not exploit its full potential. The Tablet PC’s
computational capabilities can be a valuable help to write cal-
culations and to show the dynamics of the symbols (that the
calculational method stresses so much). Even if the presenter
does not want to emphasize syntactic manipulations, having,
for example, a feature that allows reliable copy of expressions
is a huge improvement.

All the features presented in this paper contribute, in our view,
to the flexibility and reliability that we want to provide and,
more importantly, they help in doing mathematics without in-
terfering with the user’s thought. Although this library was
created with presentations in mind, it can also support stu-
dents and researchers in solving mathematical problems.

The evaluation of the library with teachers and students has
confirmed that the features available are usable, suitable for
their purpose, and useful for teaching and learning. However,
it has also shown that familiarity with the use of Tablet PCs
and with the features of the tool are important usability fac-
tors. In the future we expect to carry out an experiment where
students use the tool to handwrite and manipulate mathemat-
ical content (we also plan to use large surfaces, such as walls
and tables).

It is important to note that our library is just a prototype.
There are still many challenges ahead, the most important
being the improvement of recognition of handwritten math-
ematics. Even though recognition of handwritten mathe-
matics is outside the scope of this work, having a recognizer
oriented to the mathematical structures used in teaching algo-
rithmic problem solving in a calculational style would make
the editor more usable. Moreover, the current functionalities
can still benefit from more improvements and testing. After a
more stable library is achieved, our next step will be to look
into connecting it with a theorem prover so that the system
can produce automated proofs and support the user in writing
a proof by suggesting valid steps. Another avenue that we
may pursue is the support for algorithm animation. It would
also be interesting to investigate how the features described in
this paper could be integrated into systems that support more
advanced interactions (like Hands-On Math [26]).

Even though this is not a professional tool, it can still be used
for presentations and it is a starting point for what can become
a very useful tool.
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