EcoAndroid: An Android Studio Plugin for
Developing Energy-Efficient Java Mobile
Applications

Ana Ribeiro* and Jodo F. Ferreiral
INESC-ID & Instituto Superior Técnico
University of Lisbon, Lisbon, Portugal

Email: *anasofiaribeiro@tecnico.ulisboa.pt, t joao@joaoff.com

Abstract—Mobile devices have become indispensable in our
daily life and reducing the energy consumed by them has
become essential. However, developing energy-efficient mobile
applications is not a trivial task. To address this problem, we
present EcoAndroid, an Android Studio plugin that automatically
applies energy patterns to Java source code. It currently supports
ten different cases of energy-related refactorings, divided over five
energy patterns taken from the literature. We used EcoAndroid
to analyze 100 Java mobile applications (=~ 1.5M LOC) and we
found that 35 of the projects had a total of 95 energy code smells.
EcoAndroid was able to automatically refactor all the code smells
identified.

Index Terms—Green Software, Energy Consumption, Energy
Patterns, Code Smells, Android, Refactoring

I. INTRODUCTION

Mobile devices have become a fundamental accessory in
current day-to-day life. They are used as credit cards, work
tools, educational helpers, among many other useful purposes.
Unfortunately, the battery power on them is finite and, despite
the advances in hardware and battery technology, the needs of
most users are not yet met. Indeed, Wilke et al. [1] analyzed
comments left in the Google Play market place for Android
applications and concluded that 18% of the complaints were
related to energy problems. The reduction of the energy
consumed by mobile devices has thus become an important
non-functional requirement [2], [3]].

One way of decreasing the energy consumed by a mobile
device is to ensure that the mobile applications that the device
runs are energy-efficient. However, this is a complex task
since a lot of factors can influence energy consumption, such
as: the mobile networking technology used (3G, GSM or
WiFi) [4]; heavy graphic processing; and screen usage while
on an application. Taking these factors into consideration is not
always trivial, as they can be easily overlooked by developers
when coding.

An approach that makes the development of energy-efficient
mobile applications easier is following so-called energy pat-
terns, which are code patterns known to use energy prudently.
Work documenting these patterns has been growing in recent
years [S]-[8]. An extremely useful resource is Cruz and
Abreu’s catalog of energy-related patterns [5]. This catalog

Alexandra Mendes
University of Beira Interior, Covilha, Portugal
HASLab, INESC TEC, Porto, Portugal
Email: alexandra@archimendes.com

can be of great assistance to mobile application developers, as
it describes each pattern and its context, also providing a series
of examples and references. However, the manual application
of these patterns is far from trivial and can be time-consuming.
To address this problem, we present EcoAndroid, an An-
droid Studio plugin that automatically applies a set of energy
patterns to Java source code. At the time of writing, the plugin
supports ten different cases of energy-related refactorings, dis-
tributed over five energy patterns taken from the literature [5]].
We used EcoAndroid to analyze 100 Java projects (=~ 1.5M
LOC) from F-Droid, a Free and Open Source Android App
Repository, and we found that 35 of the projects had a total of
95 energy code smells detected by the plugin. EcoAndroid was
able to automatically refactor all the code smells identified.
EcoAndroid is an extendable Android Studio plugin, created
to assist developers in creating energy-efficient mobile appli-
cations. Since it is open sourc it can also be extended by
the research community to explore new techniques that help
in the creation of more energy-efficient mobile applications.
EcoAndroid is currently available in the JetBrains Market-
place: https://plugins.jetbrains.com/plugin/15637-ecoandroid
Hllustrative Example: To illustrate the type of refactoring
that EcoAndroid is capable of, we show in Figure[I]an example
of a refactoring suggested and applied by EcoAndroid. It
consists in the application of the Cache - Check Metadata
energy pattern in the Android mobile application Taskba
which puts a start menu and recent apps tray on top of the
screen that is accessible at any time. Taskbar is a popular
application: at the time of writing, its GitHub project has 405
stars and it has been downloaded more than 1 million times
from the app store Google Play. Figure [[a] shows the original
source code, where the code smell was detected. There is an
opportunity to optimize the energy efficiency of the code by
caching the object bundle and only executing the code if the
object has changed. Figure |1b| shows the source code after the
refactoring automatically performed by EcoAndroid.

'EcoAndroid Github Repository: https://github.com/st-lab/EcoAndroid
2Taskbar (Google Play): https://play.google.com/store/apps/details?id=com.
farmerbb.taskbar,

https://plugins.jetbrains.com/plugin/15637-ecoandroid
https://github.com/sr-lab/EcoAndroid
https://play.google.com/store/apps/details?id=com.farmerbb.taskbar
https://play.google.com/store/apps/details?id=com.farmerbb.taskbar

(a) Original code: code smell detected.

public final class TaskerConditionReceiver
private Bundle lastbundle = null;

@Override

public final class TaskerConditionReceiver public void onReceive (Context context, Intent intent)
. {

@Override extends BroadcastReceiver { if (U.isExternalAccessDisabled (context)) return;
;giic ind onReceive (Context context, Intent intent) if (lastbundlelec 3 (ElmIBEIE o ERERTREILEEE R (CEm:
? ! twofortyfouram.locale.api.Intent.E DLE))
if (U.isExternalAc sDisabled(context)) return; ¢ // bundle hasn't changed: we can safely ret
BundleScrubber.scrub (intent) ; ret‘;rnA hasn't changed: we can safely r r

final Bundle bundle = } !
i .getBundleExtra .twofortyfouram.locale. 8
intent v ra(com apl ,l Erlnrj’ JLE) updateValues (intent) ;
. tent .EX) ;
J:.J;..(PluginBundleManager. isBundlevalid (bundle)) if (PluginBundleManager.isBundleValid (lastbundle))
{ } S { ...}
A)
}
} private void updateValues (Intent intent) {

lastbundle =
intent.getBundleExtra (com.twofort

extends BroadcastReceiver {

api.Inten

(b) Refactored code: energy pattern applied.

Fig. 1: Ilustrative example of an EcoAndroid refactoring applying the energy pattern Cache - Check Metadata on the popular

application Taskbar.

II. BACKGROUND AND RELATED WORK

This section presents an overview of the main concepts used
in this paper and discusses related work.

A. Energy Patterns

An Energy Pattern can be defined as a design pattern that
mobile application developers can adopt to improve the energy
efficiency of mobile applications. It is common to present
energy patterns with an anti-pattern example and a description
of the alterations needed to reduce the energy consumed.
Studies with the goal of documenting energy patterns have
emerged over recent years [S[]-[9].

B. Mobile Applications Environments and Languages

A study done by Habchi et al. [[10] compared the ratio of
energy code smells in iOS and Android mobile applications,
concluding that the latter had a higher number of energy code
smells. The study also states that these differences are related
to the platform and not to the difference in programming
languages. The main languages for programming iOS mobile
applications are Swift and Objective-C while for Android
mobile applications are Java and Kotlin. In terms of IDEs,
Android Studio (built on IntelliJ), IntelliJ, and Eclipse are
popular choices, being that the first one is the official one for
Android development and the one chosen for this project. Note
that, even though we focus on Android mobile applications,
Android Studio can also be used to develop iOS mobile
applications. As long as these applications are written in the
Java programming language, EcoAndroid can be used.

C. Energy-Related Refactoring for Java Source Code

This subsection focuses on refactoring tools that optimize
the energy efficiency of Java mobile applications. Table [I] lists
the tools and their respective environment.

Leafactor [11f], [[12] is a tool that automatically refactors
Android mobile applications source code to reduce energy
consumption. Leafactor is an Eclipse plugin while EcoAn-
droid is compatible with both Android Studio and IntelliJ.
The 5 refactorings supported by Leafactor are acquired from
a previous study by the same authors about the effect of
performance-based practices on mobile applications’ energy
consumption [8]. Chimera [13] covers 11 energy-greedy
code patterns. It uses LintE] for the inspection phase and
Autorefactor [[14] for the refactoring phase. A new aspect
about this project is how broad the evaluation is, inspecting
more than 600 mobile applications. In their paper, Couto et
al. [13]] also compare the energy savings of combinations of
refactorings. AEON (Automated Android Energy-Efficiency
Inspection) [15] is a support framework, compatible with
IntelliJ and Android Studio. It automatically detects energy
inefficiencies in Android mobile applications and helps de-
velopers fix those inefficiencies. It also supports developers
in verifying, refactoring and profiling such inefficiencies.
EARMO [16] is an approach that detects and corrects energy-
related anti-patterns in mobile applications, while accounting
for energy consumption when performing the refactorings. It
supports 8 anti-patterns within two categories: Object-oriented
specific and Android-specific. The refactoring is achieved
via refactoring-tool-support provided by Android Studio and

3Lint is a code analysis tool (developer.android.com/studio/write/lint).

developer.android.com/studio/write/lint

Tool/Approach Name Environment

Leafactor [[11]], [12] Eclipse

Chimera [[13] -

AEON [15] IntelliJ,
Android Studio

EARMO [16] IntelliJ,
Manually

aDoctor [17], [22] Eclipse,

Android Studio
Android Studio
(Android lint)
HOT-PEPPER [20] -

Greeness category [19]

TABLE I: Energy-Specific Refactoring Tools.

Eclipse. When that is not possible, the changes have to be
applied manually. Palomba et al. propose aDoctor [17], a
tool that identifies 15 Android-specific code smells from a
catalog by Reimann et al. [18]]. It is built on top of the
Eclipse Java Development Toolkit (JDK). aDoctor was also
extended as an Android Studio plugin supporting 5 energy-
related refactorings. Le Goaér presents a new category in
Android lint entitled Greenness [19]]. This category has 11
checks, which can be viewed as an inspection in Android
Studio. HOT-PEPPER |[20]] is able to detect and correct 3
types of Android-specific code smells. It uses PAPRIKA [21]],
a static analysis tool for Android apps for the detection and
correction of code smells. As a final step, HOT-PEPPER uses
a tool called NAGA VIPER, to compute energy metrics and
evaluate the impact of corrected APKs, being able to inform
the developer which APK is the best energy-efficient version
for a given scenario.

When compared to the tools above, EcoAndroid is the first
to support refactorings associated with the energy patterns
Dynamic Retry Delay, Push Over Poll, Cache, and Avoid
Extraneous Graphics and Animations.

III. ECOANDROID: ARCHITECTURE AND
IMPLEMENTATION

This section describes the architecture of EcoAndroid and
the cases that were implemented.

A. Overview

EcoAndroid is an Android Studio plugin that suggests
automated refactorings with the aim of reducing energy con-
sumption of Java android applications. Android Studio is an
IDE built on JetBrains’ IntelliJ] IDEA. Due to this fact, the
EcoAndroid plugin is also compatible with IntelliJ. Android
Studio was chosen because it is the official IDE for Android
app development, making it the best choice for maximizing
the impact of our work.

To the best of our knowledge, there are no general-purpose
refactoring plugins for Android Studio that can serve as the
basis for this project. Thus, to aid in the refactoring of
the source code, the Program Stucture Interface (PSI) of
IntelliJ was used [23]]. PSI is a layer of the IntelliJ Platform
responsible for parsing files and creating the syntactic and

/ Android
.’ Studio

shows a warning
in the source code

~

Ecolndraid

Inspection
presents source

© ,l I
sends information .
about code-small Retaciaring
5 code as AST
" alters source code 1 ()

PSIAPI

Mobile application project

%%
5)

source code to be prasented as AST-

wants to fix code-smell
warning about energy code-smell

.,

Developer

Fig. 2: EcoAndroid detection and refactoring process.

semantic code model. It creates PSI files, that are the root of
a structure representing the contents of a file as a hierarchy
of elements in a particular programming language. PSI is
a read-write representation of the source code as a tree of
elements corresponding to the structure of a source file. The
PSI can be modified by adding, replacing and deleting PSI
elements. These features allow the detection of possible energy
improvements and the refactoring itself.

An Intelli]’s plugin can have two types of inspections: a
local inspection or a global inspection. As the names suggest,
a local inspection looks at only one file, while a global
inspection looks at a group of files. Due to this, a global
inspection does not show warnings along the source code
but needs to be run manually by the user. Since we want
EcoAndroid to be a tool that developers use interactively
during development, every case that the plugin supports is
implemented as a local inspectionE] The plugin supports a total
of five energy patterns, divided in ten separated cases. Each
case is implemented as a local inspection in the plugin.

Figure [2] illustrates the process flow of the user interaction
between the developer and EcoAndroid. The plugin starts by
performing a static analysis, aided by the PSI API. The source
code is represented as an Abstract Syntax Tree (AST) (actions
@ and @). If a code smell is found, a warning is shown

to the developer (action @) and, if the they wish to do so
(action @), the refactoring, which is also aided by the PSI
API, is executed (action @).

B. Cases Implemented

The five energy patterns supported are a subset of the
ones presented in the catalog by Cruz and Abreu [5]]. The
energy patterns are: Dynamic Retry Delay, Push Over Poll,
Reduce Size, Cache, and Avoid Extraneous Graphics and
Animations. These were chosen because they all seem feasible

“Despite being designed as a tool to be used interactively in the IDE, it is
possible to run EcoAndroid in batch mode. This is useful to process many
projects, as we have done in our evaluation (see below).

to be implemented with little to none human intervention

and also because they are not implemented by any of other

existing refactoring tools. As described below, in some of these

patterns more than one case was implemented (there are 10

cases in total). EcoAndroid provides two types of warnings:

informational ones and non-informational ones. The first type
does not have an automated refactoring associated. This is
because either i) the suggestion is impossible to implement
without further information (e.g. in the case of the Push Over
Poll energy pattern, registration of the class in Firebase is
needed) or ii) the required changes affect too much code. For
these cases, if the developer wishes to follow EcoAndroid’s
suggestion and implement the changes manually, the plugin
introduces a TODO comment so that the change is listed in
the IDE’s TODO window. The second type of warning has
an automated refactoring associated and will change the code
by applying the identified energy pattern. Figure [3] shows
the 10 cases supported by EcoAndroid. Cases with gray
background represent informational cases, where no source
code is altered. We briefly describe all the cases below, but
due to space restrictions, we only discuss in detail two cases:

Dynamic Wait Time and GZIP Compression. For more details

on how EcoAndroid refactors the code, the reader can consult

the entries of the considered patterns on Cruz and Abreu’s

catalog [5].

1) Dynamic Retry Delay: The goal of the Dynamic Retry
Delay pattern is to increase the interval between attempts
to access a resource, avoiding trying to constantly access a
resource that most likely went down. If an attempt to access a
resource fails, the time between attempts should be increased,
until a certain value, in order to spread over time the accesses.
If the access is successful, the interval should not be changed.
This energy pattern has two cases: Dynamic Retry Delay and
Check Network. We describe in detail the first case.

a) Dynamic Wait Time: The first case of the Dynamic
Retry Delay energy pattern is named, by the plugin, Dynamic
Wait Time. The interval between threads sleep should grow
exponentially and not stay constant, decreasing the chance
of trying to access a resource that most likely went down.
In the example shown in Listing [T} there is a sleep invo-
cation, using the backOffSeconds variable. This variable
comes from the parameter of the method startLongPoll.
As it is a parameter, the inspection looks for method calls
of the method startLongPoll in the current Java file.
As we can observe, there is a method call which uses
the newBackOffSeconds variable to invoke the method.
The variables are assigned with constant values, either 30
or 60. When processing this example, the plugin flags this
as a problem, showing up as a warning on the variable
backOffSeconds. In this case, EcoAndroid presents the
user with two warnings:

o Warning 1: “EcoAndroid: Dynamic Retry Delay Energy
Pattern - information about a new approach to imple-
ment it”

The informational warning shown does not alter any source

code: it only adds a comment with a link that further

private void startLongPoll (String polledFile,
int backOffSeconds) {
pollingTask = new Thread () {
public void run() {
long start_time = System.currentTimeMillis();
long longpoll_timeout = 480;
int newBackoffSeconds = 0;
if (backOffSeconds != 0) {
log.info ("Backing off for "+
backOffSeconds + " seconds");
try {
Thread.sleep ((long)
(backOffSeconds =+ 1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}

if (System.currentTimeMillis () - start_time <

longpoll_timeout = 1000) {
log.info("Longpoll timed out to quick,
backing off for 60 seconds");
newBackoffSeconds = 60;

}

else {
log.info ("Longpoll IO exception,
restarting backing off {} seconds"
+ 30);

newBackoffSeconds = 30;
}
startLongPoll (polledFile, newBackoffSeconds);

Listing 1: Dynamic Wait Time - code smell detected.

pollingTask = new Thread () {

public void run() { ...}

Listing 2: Dynamic Wait Time - energy pattern applied (in-
formation about a new approach to implement it).

explains how to use the WorkRequest class instead of
using the Thread class. This is shown in Listing

o Warning 2: “EcoAndroid: Dynamic Retry Delay Energy
Pattern - switching to a dynamic wait time between
resource attempts case”
The second option presented to the developer alters the
source code, changing every static variable assignment to
a dynamic one. It starts by creating a variable entitled
accessAttempts, initialized at 0. As the name sug-
gests, the variable holds the number of access attempts
to a resource. Then every static assignment done to the
variable that puts the thread to sleep, in this case it is
newBackoffSeconds, is altered to an incremental as-
signment of the accessAttempts variable. Finally, the
number of access attempts is altered to a value of time with
an upper bound. Listing [3] represents the application of the
Dynamic Wait Time pattern, which applies the alterations
described.

ENERGY PATTERNS (AND CASES)

l Bl sy I l Push Over Pall I

Reduce Size

]]

Vol ranecus
Cache Graphic;; and

Informational

Dynamic Wait
‘Warning FCM

Time

[Check Network] [

] [GZIP Comprcssion]

Check Metadata

]

‘—»[URL Caching] [Dirty Rendering]

Information about a Switching to a
new approach o dymamic walt time

Implemant it approach

55L Session
Caching

¥
Possible switch to Passive Provider Switching to
Passsive_Provider Location Passsive_Provider

Check Layout Size

\

Fig. 3: Energy patterns supported by EcoAndroid. Cases with gray background represent informational cases, where no source

code is altered.

private void startLongPoll (String polledFile,
int backOffSeconds) {
pollingTask = new Thread

0 A
int accessAttempts = 0;

public void run() {
if (System.currentTimeMillis () start_time
< longpoll_timeout = 1000) {
log.info("Longpoll timed out to quick,

backing off for 60 seconds");
accessAttempts++;
}
else {
log.info ("Longpoll
restarting backing off
+ 30);
accessAttempts++;

IO exception,
{} seconds"

}
newBackoffSeconds =
(Math.pow (2.0,
1.0));
startLongPoll (polledFile,

(int) (60.0
(double) accessAttempts)

newBackoffSeconds) ;

Listing 3: Dynamic Wait Time - energy pattern applied
(switching to a dynamic wait time between resource attempts).

2) Push Over Poll: A push notification establishes and
maintains a connection with a server over the Internet, allow-
ing the server to send data to the application when something
has actually changed on the server. On the other hand, polling
is the continuous checking of other programs or devices
by one program or device to check what state they are in,
usually to see whether they are still connected or want to
communicate. The goal of this energy pattern is to use push
notifications instead of actively querying resources, such as
polling. This transformation is specifically beneficial when
there is not a significant number of notifications, as shown
by Dinh and Boonkrong [24], who compare battery usage
between these two techniques. If there is not a significant
number of notifications coming in, pushing notifications will
be a better choice since it’s not always actively querying
resources. Otherwise, the difference between these two mech-
anisms is not as significant. This energy pattern has one case:
Informational Warning FCM.

3) Reduce Size: The goal of the pattern Reduce Size is to re-
duce the size of the data being transferred as much as possible,
therefore reducing the energy being used in the transfer. The

HttpURLConnection con =
(HttpURLConnection)
>ut .println("Length : " + con.g

url. openConnection() ;
ontentLength());

System.
Reader reader =
new InputStreamReader (con.getInputStream());

Listing 4: GZIP Compression - code smell detected.

HttpURLConnection con =

(HttpURLConnection) url.openConnection();
con.setRequestProperty ("Accept-Encoding", "gzip");
System.out.println("Length : " + con.getContentLength());
Reader reader;
if ("gzip".equals (con.getContentEncoding())) {

reader = new InputStreamReader (new GZIPInputStream (
con.getInputStream()));
} else {
reader = new InputStreamReader (con.getInputStream());

}

Listing 5: GZIP Compression - energy pattern applied.

change to be made consists in transforming/compressing the
data being transmitted, whenever a data transfer occurs. This
energy pattern has one case: GZIP Compression. The goal is
to ensure that any given response from an URL Connection is
compressed by the GZIP scheme. Consider the example shown
in Listing 4] where there is an open connection receiving an
input stream that is not requested to be compressed. For this
case, EcoAndroid shows a warning and allows the developer
to automatically refactor the code into the code shown in
Listing [5}

4) Cache: The goal of the Cache pattern is to store data
that is being used frequently, which means a lower energy
consumption since it reduces the amount of code executed.
This energy pattern has five cases: Check Metadata, Check
Layout Size, SSL Session Caching, Passive Provider Location
and URL Caching.

5) Avoid Extraneous Graphics and Animations: Graphics
and animations are resources associated with an high energy
consumption. The intent of the Avoid Extraneous Graphics
and Animations’s pattern is to reduce the usage of this
resources as much as possible. This is particularly relevant
for any resource associated with an high energy consumption
that does not have a direct impact on the user experience.

However, knowing when to apply this pattern is a challenge
since it is difficult to know exactly when a resource is
strictly needed or when the resource does not have a direct
impact on the user experience. The energy pattern has
one case: Dirty Rendering. EcoAndroid supports only a
simple case: it is able to change the rendering mode from
GLSurfaceView.RENDERMODE_CONTINUOUSLY to
GLSurfaceView.RENDERMODE_WHEN_DIRTY.

IV. EVALUATION

Given that the goal of EcoAndroid is to automatically apply
a set of energy patterns to Java source code, we measured how
many refactorings EcoAndroid suggests for a realistic set of
mobile Java applications.

A. Mobile Applications Analyzed

We used Android mobile applications retrieved from
F-droid [25], an alternative app store that catalogs over 2000
mobile applications that are Free and Open Source Software
(FOSS). We retrieved meta-information about all the F-Droid
applicationf] and we filtered and ordered them before being
used for the evaluation. We processed information relative
to 2319 mobile applications from which we filtered 1615
applications with the following characteristics:

« The source code of the application is available in GitHub;
o The GitHub project is not archived;

o The GitHub project has had a commit since 2018;

o The source code of the application is written in Java.

From the F-Droid applications retrieved, there was a total
of 474 mobile applications where the main language was
not Java, 89 mobile applications where the GitHub project
was archived, and 141 mobile applications with the last
commit made to the GitHub project more than 2 years ago.
The mobile applications were then sorted by the following
order: 1) Percentage of Pull Requests accepted; 2) Date of
Last Commit; 3) Total merged Pull Requests; 4) Number
of GitHub Stars; 5) Number of GitHub Watchers. The first
three criteria were chosen to increase our chances of having
feedback from developers. Our intuition is that maintainers of
projects that accept more pull requests might be more open
to discuss our proposals. The last two criteria were chosen to
maximize impact by selecting popular projects. After filtering
and ordering the mobile applications, the top 100 applications
were used in the evaluation process. This corresponds to a total
of 7441 Java files and 1,468,597 LOC. Table [IIl summarizes
the main characteristics of the GitHub projects, considering
both processed and inspected projects.

B. EcoAndroid Refactorings

We were interested in determining how many refactorings
are suggested by EcoAndroid for the top 100 mobile appli-
cations retrieved from the filtered and ordered dataset. For
this, we executed EcoAndroid in batch mode, since doing it
manually for 100 applications would be too time-consuming.

SCollection date: 25 June 2020

Table [I1I] presents the results. The lines with a gray background
refer to informational warnings, whose refactorings introduce
TODOs into the source code. We divided this evaluation
in three stages: we first processed the top twenty mobile
applications, then the following twenty, and then the remaining
sixty applications.

During the first stage, it became clear that an application
of the Check Network energy pattern in the Second Screen
app did not make sense, since the application did not declare
permission to use the internet. We updated EcoAndroid ac-
cordingly and this was no longer a problem in the following
stages. Also during the first stage, an application of the
Check Metadata energy pattern in the Hacs mobile application
could break some notifications of the application. We updated
EcoAndroid to consider the case identified and this was no
longer a problem in the following stages. We moved to the
second stage and then to the third stage, thus analysing a total
of 100 applications. In the second and third stages there were
no problems identified and no changes to EcoAndroid were
required.

A total of 95 refactoring opportunities were found in 35
projects, in a total of 7441 Java files, giving an average of
one refactoring per 78.33 ~ 78 files. Since, in average, the
source code of a mobile application inspected has 74.41 Java
files, this means an average of around 0.95 ~ 1 refactorings
per project. This is the case with most projects.

Case Analysis: The case with the most refactorings is
URL Caching with 42.1% of the occurrences. It is followed by
Check Metadata (14.7%), Passive Provider Location (11.6%),
SSL Session Caching (10.5%), Push Over Poll (8.4%), and
Check Network (5.3%). EcoAndroid found no opportunities for
applying refactorings related to the cases Dynamic Wait Time,
Check Layout Size and Dirty Rendering. The combination of
patterns with the highest number of associated refactorings
is URL Caching with GZIP Compression with nine projects
being affected. This is expected since they both look for an
invocation of the method URLConnection#openConnection()
as a first step. The next two combinations with the most
occurrences are URL Caching with SSL Session Caching and
URL Caching with Passive Provider Location, both affecting
three mobile applications. With two occurrences, the combi-
nation Check Network and URL Caching is next. With only
one occurrence are the combinations: Info Warning FCM with
URL Caching, Info Warning FCM and GZIP Compression,
Check Network and Check Metadata, Check Network and
SSL Session Caching, Check Metadata and Passive Provider
Location, Check Metadata and URL Caching and the last one
is Check Metadata and GZIP Compression.

V. THREATS TO VALIDITY

There are two main aspects that may affect the validity
of our work and findings. First, due to the complexity of
EcoAndroid, there may exist implementation bugs. We exten-
sively tested the tool to mitigate this risk. Moreover, since
EcoAndroid was able to refactor a substantial amount of real-
world code written by multiple people, we are confident in our

GitHub GitHub GitHub GitHub Merged Closed % PRs
Watchers Stars Forks Contributors PRs PRs Accepted
All Min 0 0 0 0 0 0 0
Apps Mean 18.53 185.37 65.27 10.21 39.71 48.20 0.61
Max 1692 25630 8716 317 2603 3009 1
Top Min 0 0 0 1 1 1 1
100 Mean 6.3 38.44 11.61 8.43 5.88 5.88 1
Max 29 616 181 317 60 60 1
TABLE II: F-Droid mobile applications characteristics.
Energy Patterns Case Refactorings VI. CONCLUSION
Dynamic Retry Delay Dynamic Wait Time 0
Check Network 5 EcoAndroid is an Android Studio plugin that automatically
Push Over Poll Info Warning FCM 8 applies a set of energy patterns to Java source code. We used
Reduce Size GZIP Compression 14 EcoAndroid to analyze 100 Java mobile applications from F-
Cache Check Metadata 7 Droid (=~ 1.5M LOC) and we found that 35 of the projects
SSL Session Caching 10 had tal of 95 d IIs det d by the olugi
Check Layout size 0 ad a to al o energy code smells de ected by the plugin.
Passive Provider 11 EcoAndroid was able to automatically refactor all the code
Location smells identified. These results suggest that EcoAndroid is
. URL Caching 40 useful and is capable of applying energy patterns to real-
Avoid Extraneous Dirty Rendering 0 world mobile applications. Since the scripts that collect and
Graphics and . . .o .
Animations process applications from F-Droid are also distributed with
Total 95 EcoAndroid, we argue that our artefacts are valuable assets

TABLE III: Number of energy opportunities detected by
EcoAndroid.

implementation. Furthermore, the code and raw data produced
in this work are publicly available for other researchers and
potential users to check the validity of the results.

Second, even though measuring the energy-saving impact
of refactorings proposed by EcoAndroid is out of the scope of
this work, whose main goal is to simplify the application of
existing energy patterns, it must be stated that there is the risk
that a proposed refactoring does not improve energy efficiency,
since EcoAndroid does not perform energy profiling. Even if
EcoAndroid is extended with existing energy profiling tech-
niques, it might be difficult to provide strong guarantees: as
documented by Ahmad et al [26], accurate mobile application
energy profiling is a non-trivial task, particularly when using
software-based energy profiling techniques (we argue that
hardware-based energy profiling techniques, despite generally
being more accurate, are not suitable for this context due to
their lack of scalability).

To mitigate this risk, we have followed closely the research
community proposals, focusing on Cruz and Abreu’s cata-
log [5]]. The fact that Cruz and Abreu analysed commits, issues
and pull requests from a large number of applications (1021
Android apps and 756 iOS apps) to identify design practices
that improve energy efficiency, and produced a catalog based
on 1563 energy-related changes of mobile apps, significantly
increases the confidence on the energy efficiency of the
refactorings proposed by EcoAndroid.

for driving reproducible research in automated energy opti-
mization of mobile applications.

Summary of Findings: The development of EcoAndroid
and its evaluation gave us several insights. The two most
important are:

1) There is a significant number of opportunities to apply
energy patterns in real-world Java Android applications.
When considering 100 applications taken from the F-
Droid repository, EcoAndroid found a total of 95 refactor-
ing opportunities in 35 projects. This suggests that there
are many Java Android applications that could benefit
from the use of EcoAndroid.

2) From the set of patterns considered by EcoAndroid,
the cases with more refactorings are URL Caching and
Check Metadata, with 42.1% and 14.7% of occurrences,
respectively. The combination of patterns with the highest
number of associated refactorings is URL Caching with
GZIP Compression (9 out of 100 projects).

Future Work: Some suggestions for immediate future
work include submitting refactorings proposed by EcoAndroid
to project mantainers (we have started this process and prelim-
inary results are positive); performing user studies to assess
the usefulness and usability of EcoAndroid; supporting the
remaining energy patterns of Cruz and Abreu’s catalog [5]]; and
performing experiments involving energy profiling. Android
Studio’s energy profiler [27] is an obvious choice that can be
explored, but ANEPROF [28] could also be a good option
since it is a real-measurement-based power profiling tool
specific for Android. Another possible direction is to extend
EcoAndroid so that it supports applications written in Kotlin
(the Kotlin language is supported by the PSI API).

ACKNOWLEDGMENTS

This work has been supported by national funds through
FCT, Fundacao para a Ciéncia e a Tecnologia, under projects
UIDB/50021/2020 and PTDC/CCI-COM/29300/2017.

[1]

[2]

[3]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

[11]

(12]

REFERENCES

C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. ABmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in 2013 IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing. 1EEE, 2013, pp. 134-141.

R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016, pp.
425-436.

E. Noei, F. Zhang, and Y. Zou, “Too many user-reviews, what should app
developers look at first?” IEEE Transactions on Software Engineering,
2019.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: a measurement study and im-
plications for network applications,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement. ~ACM, 2009, pp.
280-293.

L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applica-
tions,” Empirical Software Engineering, pp. 1-27, 2019.

G. Pinto, F. Soares-Neto, and F. Castor, “Refactoring for energy effi-
ciency: a reflection on the state of the art,” in Proceedings of the Fourth
International Workshop on Green and Sustainable Software. IEEE
Press, 2015, pp. 29-35.

M. Gottschalk, J. Jelschen, and A. Winter, “Saving energy on mobile
devices by refactoring.” in Envirolnfo, 2014, pp. 437-444.

L. Cruz and R. Abreu, “Performance-based guidelines for energy effi-
cient mobile applications,” in 2017 IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 2017, pp. 46-57.

D. Li and W. G. Halfond, “An investigation into energy-saving pro-
gramming practices for Android smartphone app development,” in Pro-
ceedings of the 3rd International Workshop on Green and Sustainable
Software, 2014, pp. 46-53.

S. Habchi, G. Hecht, R. Rouvoy, and N. Moha, “Code smells in iOS
apps: How do they compare to Android?” in 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). 1EEE, 2017, pp. 110-121.

L. Cruz, R. Abreu, and J.-N. Rouvignac, “Leafactor: Improving en-
ergy efficiency of Android apps via automatic refactoring,” in 2017
IEEE/ACM 4th International Conference on Mobile Software Engineer-
ing and Systems (MOBILESoft). 1EEE, 2017, pp. 205-206.

L. Cruz and R. Abreu, “Using automatic refactoring to improve energy
efficiency of Android apps,” arXiv preprint arXiv:1803.05889, 2018.

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

(27

(28]

M. Couto, J. Saraiva, and J. P. Fernandes, “Energy refactorings for
Android in the large and in the wild,” in 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). 1EEE, 2020, pp. 217-228.

“Autorefactor,” http://autorefactor.org/, accessed: 2020-12-01.

“AEON: Automated android energy-efficiency
inspection,” https://plugins.jetbrains.com/plugin/
7444-aeon-automated- android-energy-efficiency-inspection, accessed:
2020-12-01.

R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Earmo: An energy-aware refactoring approach for mobile apps,” IEEE
Transactions on Software Engineering, vol. 44, no. 12, pp. 1176-1206,
2017.

E. Iannone, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De Lucia,
“Refactoring Android-specific energy smells: A plugin for Android
Studio,” in Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 451-455.

J. Reimann, M. Brylski, and U. ABmann, “A tool-supported quality smell
catalogue for Android developers,” in Proc. of the conference Mod-
ellierung 2014 in the Workshop Modellbasierte und modellgetriebene
Softwaremodernisierung—MMSM, vol. 2014, 2014.

O. L. Goaér, “Enforcing green code with Android lint,” in Proceedings
of the 35th IEEE/ACM International Conference on Automated Software
Engineering Workshops, 2020, pp. 85-90.

A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of Android smells,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 1EEE, 2017, pp. 115-126.

G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, “Tracking
the software quality of Android applications along their evolution,” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2015, pp. 236-247.

F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“Lightweight detection of Android-specific code smells: The aDoctor
project,” in 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). 1EEE, 2017, pp. 487—
491.

“Program structure interface (PSI),” https://www.jetbrains.org/intellij/
sdk/docs/basics/architectural_overview/psi.html, accessed: 2020-12-01.

P. C. Dinh and S. Boonkrong, “The comparison of impacts to Android
phone battery between polling data and pushing data,” in IISRO Multi-
Conferences Proceeding. Thailand, 2013, pp. 84-89.

“F-droid,” https://f-droid.org, accessed: 2020-12-01.

R. W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, and M. Shiraz, “A review
on mobile application energy profiling: Taxonomy, state-of-the-art, and
open research issues,” Journal of Network and Computer Applications,
vol. 58, pp. 42-59, 2015.

“Inspect energy use with energy profiler,” https://developer.android.com/
studio/profile/energy-profiler, accessed: 2020-12-01.

Y.-F. Chung, C.-Y. Lin, and C.-T. King, “Aneprof: Energy profiling
for android Java virtual machine and applications,” in 2011 IEEE 17th
International Conference on Parallel and Distributed Systems. 1EEE,
2011, pp. 372-379.

http://autorefactor.org/
https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection
https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://f-droid.org
https://developer.android.com/studio/profile/energy-profiler
https://developer.android.com/studio/profile/energy-profiler

	Introduction
	Background and Related Work
	Energy Patterns
	Mobile Applications Environments and Languages
	Energy-Related Refactoring for Java Source Code

	EcoAndroid: Architecture and Implementation
	Overview
	Cases Implemented
	Dynamic Retry Delay
	Push Over Poll
	Reduce Size
	Cache
	Avoid Extraneous Graphics and Animations

	Evaluation
	Mobile Applications Analyzed
	EcoAndroid Refactorings

	Threats to Validity
	Conclusion
	References

