
bGSL: An Imperative Language for Specification and

Refinement of Backtracking Programs
∗

Steve Dunne1, João F. Ferreiraa, Alexandra Mendesb, Campbell Ritchie1,
Bill Stoddartc, Frank Zeyda1

aINESC-ID & IST, University of Lisbon, Portugal
bHASLab / INESC TEC & Faculty of Engineering, University of Porto, Portugal

cTeesside University, United Kingdom

Abstract

We present an imperative refinement language for the development of back-
tracking programs and discuss its semantic foundations. For expressivity,
our language includes prospective values and preference—the latter being a
variant of Nelson’s biased choice that backtracks from infeasibility of a contin-
uation. Our key contribution is to examine feasibility-preserving refinement
as a basis for developing backtracking programs, and several key refinement
laws that enable compositional refinement in the presence of non-monotonic
program combinators.

Keywords: backtracking, semantics, preferential choice, nondeterminism

1. Introduction

Backtracking is a well-established technique to efficiently and elegantly
solve a variety of computational problems. For example, the authors have
been exploring backtracking in the context of reversible computing (Stoddart
et al., 2010). The motivation for reversible computing comes from Landauer’s
observation that the loss of information in a computing device is inevitably
tied to the expenditure of energy (Landauer, 1961). The inevitable cost
of kT ln(2) units of energy for erasing one bit of information is known as
Landauer’s limit. For reversible processes, however, this limit does not apply,
since all information is preserved during the computational process.

Interest in reversible computing emerged from the field of formal methods
and verification. Guarded command languages (GCLs) (Dijkstra, 1975) pro-

∗
Authors sorted alphabetically by surname.

∗ ∗
DOI: https://doi.org/10.1016/j.jlamp.2022.100811

1Independent researcher

Preprint submitted to Journal of Logical and Algebraic Methods in Programming

https://doi.org/10.1016/j.jlamp.2022.100811

vide the formal underpinning of some influential verification techniques (Abrial,
1996; Crocker, 2003), and Zuliani showed how a guarded command lan-
guage (GCL) can be made reversible by introducing auxiliary state to record
information about the resolution of nondeterminism (Zuliani, 2001).

Noting that reversible processes can be implemented as backtracking pro-
grams, one can go one step further by claiming that GCLs are already describ-
ing reversible computations due to the implicit backtracking that arises from
the semantic properties of stand-alone guards and nondeterministic choice.
To illustrate this, we consider the abstract program:

P =̂ (x := 1 ⊓ x := 2) ; x = 2 −→ skip

Using the weakest-precondition calculus (Dijkstra, 1976) (Appendix A), we
can show that this program is equivalent to x := 2. Operationally, we imagine
that a hypothetical daemon2 exercises a nondeterministic choice of either
x := 1 or x := 2. The daemon is, however, constrained by feasibility of
the subsequent guarded statement x = 2 −→ skip. (We note that the
program skip merely terminates without changing the program state.) We
observe that an earlier choice of x := 1 renders the guard infeasible, and
hence our daemon is forced to ‘go back’ and select the second alternative
x := 2. This backtracking property of S ⊓ T resulting from the interaction of
nondeterminism and (in)feasibility is well understood (Morgan and Vickers,
1992). In Appendix B we show a proof of this equivalence.

When the daemon backtracks, all state is restored. Hence, the daemon’s
behaviour can be depicted in terms of reversibility: choices are made pro-
visionally, with failed guards causing the execution to reverse. This opera-
tional view gives rise to a new programming language suited for the develop-
ment of backtracking programs. We call this language bGSL (backtracking
GSL), since its core constructs are those of the Generalised Substitution Lan-
guage (GSL) of the B verification method (Abrial, 1996). However, unlike
Abrial’s GSL, bGSL permits nondeterministic choice and stand-alone guards
not only as specification constructs but also as executable commands.

Contributions. Our first contribution is to give a precise definition of the
syntax and semantics of bGSL. Alongside the standard GSL combinators de-
scribed by Abrial (1996), we incorporate two additional constructs: prospec-
tive values (Zeyda et al., 2005) and preference (Stoddart et al., 2010). Prospec-
tive values have only been studied as a semantic vehicle thus far, and we here
formally introduce them as programming constructs and illustrate their use-
fulness by way of an example (Section 6).

2The word ‘daemon’ emphasises the malevolent nature of the resolving agent.

2

A challenging issue in bGSL is refinement. Refinement is at the heart of
many verification techniques and formally establishes when an abstract spec-
ification is (correctly) implemented by a concrete program. Conventionally,
the everywhere-infeasible program magic =̂ false −→ skip refines any other
program and is therefore sometimes called a miracle; while being useful in
modelling, it typically cannot be executed as establishing any specified be-
haviour vacuously. In bGSL, magic is called reverse and used to backtrack
(i.e., to reverse execution). This poses a problem since there is no meaningful
way in which a runtime system can respond if faced with executing reverse
on its own. An attempt to overcome this issue is feasibility-preserving
refinement (Zeyda et al., 2003). Sadly, it turns out that this refinement no-
tion is not monotonic with respect to sequence in the first operand. Further
monotonicity issues emerge due to preference, as it takes us out of the fa-
miliar territory of sequential and monotonic computations (Back and von
Wright, 1992). Stoddart et al. (2010) observe this and investigate an alter-
native ‘temporal order of continuation’ semantics that makes implementor’s
and backtracking choice orthogonal. Though this leads to better monotonic-
ity properties, it results in a less tractable refinement calculus with fewer
laws. We here delve deeper into the monotonicity issue and present novel
laws that facilitate piecewise development despite the aforementioned loss of
monotonicity. We thereby lay the foundations for a compositional verifica-
tion approach in bGSL; this is the second and central contribution of this
paper. The soundness proof of the bGSL refinement calculus is not addressed
in this paper; ongoing work on mechanising preferential computations will
address this (see the section on future work).

The practical impact of our work is to support refinement-based develop-
ment of (provably) correct backtracking algorithms with heuristics. This is
particularly useful to develop correct software that runs on reversible hard-
ware or on a reversible virtual machine such as RVM (Stoddart et al., 2010),
which, at the core, consists of a reversible Forth interpreter and runtime
system. The introduction of heuristics can, for instance, be expressed as a
replacement of nondeterminism by preference, and refinement proof effort is
leveraged by feasibility-preserving refinement, being a strict subset of stan-
dard refinement.

Structure of the paper. In Section 2, we review preliminary material: bunch
theory — a theory of nondeterministic values. Section 3 discusses the syntax
and semantics of bGSL, and Section 4 examines refinement and monotonicity
issues. In Section 5, we discuss semantic foundations in more detail, pinning
down the model of preferential computations. And in Section 6, we illustrate
programming in bGSL by discussing an example. Lastly, Section 7 concludes

3

and discusses future and related work.

2. Preliminaries: Bunch Theory

To define the semantics of bGSL, we use the mathematical notion of a
bunch, as proposed by Hehner (1981). A bunch is a non-repetitive collection
of objects, similar to a set, but without structure. For instance, 0, 1, 2 is
a bunch that includes the first three natural numbers. Singleton elements
of some type, such as 0 or {1, 2}, are also bunches; we call these bunches
(atomic) values. The empty bunch containing no elements is written as null .

Bunches are motivated by the observation that set theory aggregates two
concepts simultaneously: collection and packaging. Namely, the content of a
set such as {0, 1} is the bunch 0, 1 and ought to exist independently of its
packaging via the unary operator { }. Hehner invented bunches as a mech-
anism for incorporating nondeterminism and underspecification into formal
programming. Set theory can be used (and often is), but it requires single-
valued expressions to be treated as singleton sets, with the accompanying
notational overheads of packaging and unpackaging. As Morris and Bunken-
burg (2001) put it, the theory that is ‘just right’ is bunch theory because
there is no distinction between a value and the singleton bunch consisting of
that value.

The separating comma within set enumerations is interpreted as a binary
union operator on bunches. Given two bunches E and F , bunch intersection
is denoted as E ′ F , and bunch difference as E \ F . The content of a given
set S can be extracted (as a bunch) via ∼ S . The content of the empty set is
the empty bunch null . We write A : B to denote that the elements of bunch
A are also included in bunch B . We define the guarded bunch expression
g → E to be equal to E when the predicate g holds, and null otherwise. In
previous work, we extended Hehner’s bunch theory to include an additional
bunch ⊥ that is larger than (but not equal to) any other bunch over a type;
we call this bunch ‘improper’ (Zeyda et al., 2005). The preconditioned bunch
p E is introduced with the following meaning: it is equal to E when the
predicate p holds, and otherwise equal to ⊥. Whenever we use the term
‘bunch’ hereafter, we implicitly refer to the type of extended bunches. We
lastly introduce bunch preference E ▷ F .

Definition 2.1 (bunch preference). Let E and F be bunches. Then,

E ▷ F =̂ E , (E = null → F)

Intuitively, the right-hand bunch F is only considered when the left-hand
bunch E is empty. The motivation for this operator will become clear when
we present our semantic model of bGSL in Section 3.

4

The expression § x • E represents the union of all bunches E where x
ranges over elementary values of its type. For example,

§ x • (1 ≤ x ∧ x ≤ 3) → 2x

is the bunch 2, 4, 6. We note that bound variables in our theory range over
atomic values only.

Extended bunches form a complete lattice under bunch inclusion. We use
the latter as a basis to define a notion of refinement E ⊑b F for bunches.

Definition 2.2 (bunch refinement). Let E and F be bunches. Then,

E ⊑b F =̂ F : E

We observe that bunches are either atomic, plural, empty or improper. By
‘plural’ we mean that they contain more than one element, but are strictly
smaller than ⊥. Bunches are useful to represent the outcome of nondetermin-
istic computations. Moreover, null can be used to describe the outcome of
infeasible programs, and ⊥ to capture the outcome of abortive ones. Atomic
and plural bunches yield the outcome of deterministic and nondeterministic
computations.

Note that the use of comma for bunch union raises a conflict with the
conventional notation for ordered pairs. We therefore use a 7→b for an ordered
pair rather than the conventional (a, b). We, however, retain f (x , y) as a
notation for function application to multiple arguments. To apply functions
to an enumerated bunch, we use a special pair of bunch brackets ()b as in
f (a, b)b . Importantly, function application distributes through bunch union
and is strict with respect to null and ⊥.

Hehner (1993) developed a complete axiomatisation of his bunch theory,
and Zeyda (2007) presents a detailed account of extended bunch theory. A
model for bunch theory was formulated by Morris and Bunkenburg (2001).

3. Backtracking GSL: Syntax and Semantics

Standard GSL (Abrial, 1996) extends Dijkstra’s guarded command lan-
guage (Dijkstra, 1976) with stand-alone guards and thereby revokes his ‘law
of the excluded miracle’. This is by admitting partially-feasible programs
as specification constructs. The GSL thereby follows Nelson’s generalisation
of Dijkstra’s calculus (Nelson, 1989). Towards defining bGSL, we extend it
further in the following ways:

1. We support nondeterministic choice S ⊓ T and stand-alone guards
g −→ S as executable statements, in addition to allowing them in
specifications.

5

Construct Syntax: C Semantics: C ⋄ E Feasibility: fis(C)

Skip skip E true
Assignment x := F (λ x • E)F F ̸= null
Sequence S ; T S ⋄ T ⋄ E true : S ⋄ fis(T)
Precondition p | S p (S ⋄ E) p ⇒ fis(S)
Guard g −→ S g → (S ⋄ E) g ∧ fis(S)
Choice S ⊓ T S ⋄ E ,T ⋄ E fis(S) ∨ fis(T)
Preference S ≫ T (S ⋄ E) ▷ (T ⋄ E) fis(S) ∨ fis(T)
Unbounded Choice @ x • S § x • S ⋄ E ∃ x • fis(S)

Table 1: Prospective-value semantics and feasibility of bGSL, where x is a variable, g and
p are predicates, E and F are expressions, and S and T are programs.

2. We add a new program operator S ≫ T for preferential choice.

3. We add prospective-value expressions S ⋄ E to the expression sublan-
guage of our programming notation. This is a novelty: Zeyda et al.
(2005) used them to reason about programs, but not as part of the
expression language used in programs.

The syntax and denotational-style rules for bGSL are listed in Table 1 and
must be interpreted in our theory of extended bunches. Whereas GSL defines
its rules in terms of weakest-precondition (wp) predicate transformers (see
Appendix A), bGSL uses a model based on prospective-value expression
transformers (Zeyda et al., 2005). We will examine later on in Section 5 why
this is crucial to define a model for preference.

Morris et al. (2009) first proposed expression transformers as an alter-
native model of nondeterministic computation. Here, the use of extended
bunches enables us to describe both nondeterminism and nontermination at
the level of expressions. For each construct of bGSL, we have a correspond-
ing rule for its prospective-value (pv) effect in the third column of Table 1.
The rule C ⋄ E captures the values that expression E could take were it to
be evaluated after the execution of program C.

The precedence of operators from higher to lower is as agreed as follows:

x := E ⇝ (p | S and g −→ S) ⇝ S ≫ T ⇝ S ⊓ T ⇝ S ; T ⇝ @ x • S

Regarding the fourth column of Table 1, the feasibility fis(S) of a com-
putation S can be elegantly calculated in wp semantics using the conjugate

6

weakest precondition wp(S , true)3. One can give a set of structural rules to
evaluate the feasibility of S without having to unfold the definition of fis(S).
We included them in Table 1 (fourth column). Feasibility in pv semantics is
defined as fis(S) =̂ ¬ S ⋄ ⊥ : null and equivalent to the wp definition. The
intuition is that only infeasible programs can transform ⊥ into null .

We discuss the constructs and rules in what follows.

• Skip (skip) is the computation that simply terminates without changing
the program state. Hence the value of expression E is not changed either.

• The assignment x := F also terminates but changes the value of program
variable x to that of expression F . This is captured by replacing x by F
within E . For instance, we have x := 2 ⋄ x +1 = (λ x • x +1) 2 = 2+1 = 3.
This means that the value of the expression x +1 after running the program
x := 2 would be 3.

We observe that the pv rule for assignment uses function application rather
than syntactic substitution E [x\F]. This is to force assignment to be mono-
tonic in the assigned expression F with respect to bunch refinement. We re-
call that function application, by definition, distributes through bunch union,
and moreover is strict with respect to both null and ⊥. This is not necessar-
ily the case for substitution in a bunch logic (Morris and Bunkenburg, 2002).
An additional advantage of using functional application is that it enables
elegant rules involving functional application and composition, such as:

x := F ⋄ f (g(x)) = f (x := F ⋄ g(x)) = f (g(x := F ⋄ x))

Intuitively, if we assign to x a plural bunch E , we expect this to become a
nondeterministic assignment for each atomic value of E . Moreover, if E is
empty, we expect the assignment to be infeasible; and if E is ⊥ (the outcome
of an abortive computation), the assignment must be abortive too. This is
captured by the next law, which follows from the pv rule for assignment.

Law 1 (assign-rewrite). Let E be an arbitrary bunch expression. Then,

x := E = E ̸= ⊥ @z • z : E −→ x := z

• A sequence S ; T executes S first, and then T . The self-flattening property
of bunches facilitates a pleasingly simple rule, not requiring any form of Kleisli
composition.

3The conjugate wp is defined as wp(S ,Q) =̂ ¬ wp(S ,¬ Q). It captures if there is some
way in which S can establish Q non-vacuously by a terminating behaviour.

7

• The precondition construct p | S behaves just like S if p holds, and oth-
erwise aborts. This means that outside p, it does not make any guarantees
about program behaviour — not even that the computation will terminate.
The rule captures this by using a preconditioned bunch, which evaluates to
⊥ outside p. Since ⊥ is larger than any other bunch, we also allow for any
terminating behaviour in that case; this is consistent with the interpretation
that we cannot insist on nontermination. A special computation is

abort =̂ false | skip

which aborts from all initial states.

• A guarded statement g −→ S likewise behaves like S if g holds, but other-
wise refuses to execute and therefore produces no outcomes. This is captured
by our rule yielding an empty bunch of outcomes in that case. Operationally,
the construct behaves like a program miracle outside g , achieving any de-
sired result vacuously. Our interpretation is, however, that the execution
backtracks, since nondeterminism cannot choose infeasible execution paths
as long as feasible ones are available. A special computation is reverse4

which forces backtracking irrespective of the current program state.

Definition 3.1 (Reverse). reverse =̂ false −→ skip

• The pv effect of choice translates into bunch union, as we have to consider
the outcomes of both computations. Generally, the construct S ⊓ T captures
implementor’s choice: we have no control over how or even when it is resolved.
Nonetheless, it cannot choose reverse. This is formalised by Law 2.

Law 2 (reverse-unit). (reverse ⊓ S) = S and (S ⊓ reverse) = S

This law establishes that reverse is both a left and right unit of choice. We
note that a guard g −→ S can be encoded as (¬ g −→ reverse) ; S . For a
terminating program S , we have that (S ; reverse) = reverse. This, as well
as the above law, can be easily proved from our semantic rules in Table 1.

The backtracking property of our language is a consequence of the next law,
stating that sequential composition distributes through choice.

Law 3 (seq-distr-choice). (S ⊓ T) ; U = (S ; U) ⊓ (T ; U)

4reverse is called magic in traditional theories of programming (see Section 1).

8

The proof in pv semantics is not difficult and omitted here too.

• The semantics of preference is given in terms of bunch preference (see
Definition 2.1). Operationally, in S ≫ T , the program S is chosen unless
it reverses and thus yields null . Stoddart et al. (2010) first suggested this
programming operator. It is similar to Nelson’s biased choice, but differs in
that it backtracks from infeasibility of a continuation U . It hence gives rise
to a similar distribution law as Law 3. We discuss this issue in more detail in
Section 5. We note that unlike choice, preference is perfectly deterministic.

• Unbounded choice captures unbounded nondeterminism of all behaviours
of S where the variable x ranges over the atomic bunches of its type. Our rule
rewrites it into a bunch comprehension that aggregates all bunches S ⋄ E .

A note on assignment and prospective-value expressions. As an im-
portant novelty, we admit statements of the form x := S ⋄ E in bGSL. This
is, fundamentally, not a problem since our meta and object term-languages
are assumed to be the same. By way of an example, calculating the prospec-
tive value y := ((x := 1 ⊓ x := 2) ⋄ x+1) ⋄ 2∗y yields y := (2, 3)b ⋄ 2∗y
which, by Law 1, reduces to (y := 2 ⊓ y := 3) ⋄ 2∗y and thus is equal to
4, 6. The only issue that requires more care is that of fixpoint constructions
µX • F (X) where X occurs as part of the prospective value of an expression.
For instance, if x := G [X ⋄ E] occurs in F , we have to additionally show
that G [E] is monotonic in E . (The notation E [X] is used to express that X
is a subterm of E.) This is trivially the case for x := X ⋄ E , but, for instance,
not so for x := {X ⋄ E} since packaging is not monotonic. Finally, we note
that monotonicity of assignment in F is important to carry out piecewise
refinement of prospective values: it enables us to refine x := (S ⋄ E) into
x := (T ⋄ E), provided that S ⊑ T .

4. Refinement in bGSL

Refinement is a relation between programs that makes precise when a
concrete program T correctly implements an abstract program or specifica-
tion S . The main idea behind this technique is to develop a program through
a sequence of refinement steps, starting from an abstract specification of the
program and ending up with an efficient program meeting the specification.
We write S ⊑ T to postulate that all behaviours of T must also be possible
behaviours of S .

Refinement is a powerful technique for formal program development since
high-level design patterns can be formulated as algebraic laws, verified and
applied. It proceeds stepwise by transforming an abstract specification, by

9

virtue of suitable laws, gradually into a more concrete ‘design’ of a program,
until a description is reached that is concrete enough to be directly executable
or translatable into code. Refinement may also proceed piecewise (compo-
nentwise) as long as program combinators are monotonic with respect to it.
We note that for the GSL and standard refinement in wp semantics, this is
the case.

In pv semantics, we characterise program refinement as bunch refine-
ment: all possible outcomes of T must also be possible outcomes of S .

Definition 4.1 (Refinement). S ⊑ T =̂ ∀E • (S ⋄ E) ⊑b (T ⋄ E)

This definition of refinement is indeed consistent with refinement in wp pro-
gram calculi. Zeyda (2007) proved that it establishes an isomorphic link to
wp refinement if we restrict ourselves to the GSL fragment of bGSL not using
preference. Thus, all GSL refinements remain valid in bGSL. The same is
true for refinement laws as far as programs without preference are concerned.

A problem in bGSL with the above definition of refinement is thatmagic,
in the guise of reverse (Definition 3.1), is, by definition, a permissible re-
finement of any specification or program. Whilst this makes the task of an
implementor easy, it is not what we intuitively desire. In our Reversible
Virtual Machine (Stoddart et al., 2010), for instance, running reverse at
the top level results in a program failure “ko”, as opposed to the “ok” that
is typically displayed in Forth-like interactive environments after successful
termination of a program or command. Refinement as above with its default
(wp) semantics is hence not suitable in bGSL.

To overcome this issue, we introduce a new refinement notion S ⊑∗ T
with the following guiding properties:

1. As before, the reduction of nondeterminism must be possible.

2. We prohibit the introduction of new infeasibility: T must be feasible
in all states where S is feasible.

We thus have the following definition of feasibility-preserving refinement.

Definition 4.2 (*-Refinement). S ⊑∗T =̂ S ⊑ T ∧ [fis(S) ⇒ fis(T)]

This definition effectively strengthens Definition 4.1 by a feasibility caveat
that formalises the second guiding property stated above.

To use feasibility-preserving refinement for stepwise and piecewise pro-
gram development, it has to be a preorder and all constructs of our lan-
guage (Table 1) have to be monotonic with respect to it. It is easy to prove
that ⊑∗ is a preorder, however, it has been shown that not all constructs

10

of the GSL are monotonic with respect to this notion of refinement (Zeyda
et al., 2003). In particular, we do not have monotonicity in the first operator
of sequential composition. To illustrate this, we consider

x := 1 ⊓ x := 2 ; x = 1 −→ skip

which is equivalent to x := 1 because the second choice x := 2 cannot be
taken due to infeasibility of the sequenced guard x = 1 −→ skip. We observe
that fis(x := 2) is equivalent to true because 2 ̸= ⊥ (see the corresponding
rule in Table 1). We hence have that x := 2 is not only a conventional but
also a feasibility-preserving refinement of x := 1 ⊓ x := 2. Monotonicity of
sequence in the first program would accordingly require that from

x := 1 ⊓ x := 2 ⊑∗ x := 2

we can establish the refinement

x := 1 ⊓ x := 2 ; x = 1 −→ skip ⊑∗ x := 2 ; x = 1 −→ skip

This, however, is not the case. Whereas the left-hand computation, as noted,
is equivalent to x := 1, the right-hand computation reduces to reverse since
the assignment invalidates the guard. Since fis(reverse) is false, we clearly
have that fis(x := 1) ̸⇒ fis(reverse), therefore the above is not a feasibility-
preserving refinement. By narrowing the nondeterministic choice in the first
program of a sequential composition, we have inadvertently disabled the
second program and thereby introduced new infeasibility into the overall
computation.

If we limit ourselves to the GSL subset of bGSL, sequence turns out to
be the only case where monotonicity with respect to ⊑∗ breaks down. A
proof of monotonicity of the other constructs can be found in a previous
report (Zeyda et al., 2003). More recently, we showed that the addition of
preference has a more invasive effect (Stoddart et al., 2010): it causes certain
operators to be non-monotonic even with respect to standard refinement ⊑.
These are, in particular, sequence in the second (!) and preference in the first
operand. Counterexamples illustrating this are included in Appendix F.

We have additionally developed a mechanised theory (Zeyda, 2022) to
investigate and validate monotonicity properties of bGSL, albeit in a different
semantic setting that uses three-valued Gödel-Dummet logic rather than pv
transformers5. We could mechanically verify that bGSL is monotonic with

5On-going work is to mechanically prove that the extended wp model (Zeyda, 2022)
using three-valued Gödel logic, and the pv model in this paper are isomorphic.

11

Operator Monotonic w.r.t ⊑ Monotonic w.r.t ⊑∗

p | S bGSL bGSL

g −→ S bGSL bGSL

S ; T left:bGSL right:GSL left:no right:GSL

S ⊓ T left:bGSL right:bGSL left:bGSL right:bGSL

S ≫ T left:GSL right:bGSL left:GSL right:bGSL

@ x • S bGSL bGSL

Table 2: Monotonicity properties of bGSL.

respect to ⊑ in all other operators, and thus monotonic with respect to ⊑∗

in those operators too, except for the aforementioned case of sequence in
the first operand. Table 2 summarises the monotonicity properties that have
been mechanically verified.

While the above cases of losing monotonicity are challenging for piecewise
development, we propose a combination of possible strategies to deal with it.

Strategy 1. We disallow piecewise refinement in non-monotonic operator po-
sitions; the same has to apply to fixpoint constructions: any F (X) within
µX • F (X) has to be syntactically restricted so that F remains monotonic.

Strategy 2. We establish the feasibility caveat fis(S ; U) ⇒ fis(T ; U) inde-
pendently, using the structural laws for feasibility in Table 1.

Strategy 3. Where preference is not used, Table 2 suggests that we can make
stronger monotonicity assumptions since we remain in the semantic realm of
the GSL. We therefore aim to postpone refinement that introduces preference.

Strategy 4. We make use of specialised (compositional) laws to refine non-
monotonic operators; their caveats are separately discharged as proof obli-
gations.

While Strategy 1 altogether excludes piecewise refinement of certain pro-
grams, the other strategies mitigate the repercussions of non-monotonic con-
structs. For instance, Strategy 2 enables us to ⊑∗-refine S ; U into T ; U
by first proving S ; U ⊑ T ; U and then discharging the feasibility caveat
fis(S ; U) ⇒ fis(T ; U) as an additional proof obligation. This approach
gives rise to a dual refinement regime where ⊑ and ⊑∗ are used in combi-
nation. Strategy 3 takes advantage of the structure of the refined program.
For example, if there is no preference in the refined program and neither in

12

the law, we can take advantage of monotonicity of sequence with respect to
⊑∗ in the second operand. Ideally, only at the last stage of the refinement,
nondeterministic choice is replaced by preferential choice, and the result is
bound to be a feasibility-preserving refinement. We justify this in Section 5.

A downside of Strategy 2 is that the feasibility caveat can become com-
plex, having to consider the entire program context. An alternative approach
is to mimic compositionality with specialised laws (Strategy 4). A useful one
is the following.

Law 4 (seq-fisref-mono). Let S , T and U be bGSL programs. Then,

S ; U ⊑∗T ; U provided S ⊑∗T and [fis(U)]

A proof of this law is in Appendix C. The proof burden in applying this
law is lower than the one for Strategy 2 if it is easy to establish fis(U).
This, for instance, may be the case if U is syntactically restricted to feasible
constructs only. Hence, an equivalent proviso replacing [fis(U)] would be a
syntactic restriction that U does not include stand-alone guarded statements
and reverse. An operational interpretation is that U does not cause any
backtracking by itself — reverse execution, if so, is either triggered by S or
some computation that succeeds U .

5. Preferential Computations

Choice is symmetric: S ⊓ T is semantically indistinguishable from T ⊓ S .
An implementation is hence at liberty to decide which of S or T it executes
first, and we have no control over this decision. Preference, on the other
hand, gives us more control: we know that in S ≫ T , S is tried first; and
only if S fails then do we execute T . We require, however, that preference
must backtrack just like choice to be useful for program development.

It turns out that the closest we can get to defining such an operator in
the standard model of sequential and monotonic computations (Back and
von Wright, 1992) is Nelson’s biased choice (Nelson, 1989). A definition of
it, using Nelson’s syntax, is recaptured below.

Definition 5.1 (biased choice). S ⊞ T =̂ S ⊓ ¬ fis(S) −→ T

The nondeterminism turns into a Hobson’s choice when S is feasible, since
then the guard in the right-hand program becomes false, preventing T from
being executed. The operator is hence deterministic and preferring S . Yet,
it does not quite fit our desiderata. The reason is that it does not backtrack

13

from infeasibility of a continuation U in (S ⊞ T) ; U . We illustrate this by
way of an example. Consider the program

x := 1 ⊞ x := 2 ; x = 2 −→ skip

Intuitively, we expect the above to be equal to x := 2, in analogy to the
example shown in the introduction using plain choice (page 2). If we unfold
the definition of biased choice and evaluate the feasibility guard, we obtain
the following.

x := 1 ⊞ x := 2 ; x = 2 −→ skip {unfolding biased choice}
= x := 1 ⊓ ¬ fis(x := 1) −→ x := 2 ;

x = 2 −→ skip {calculating fis(S)}
= x := 1 ⊓ false −→ x := 2 ;

x = 2 −→ skip {definition of reverse}
= x := 1 ⊓ reverse ; x = 2 −→ skip {reverse unit law (Law 2)}
= x := 1 ; x = 2 −→ skip

We observe that the second alternative x := 2 has disappeared, and this
renders the overall computation equivalent to reverse. The reason for this
is that the feasibility guard ¬ fis(x := 1) did not take into consideration that
the assignment x := 1 may cause the continuation x = 2 −→ skip to fail.
We hence obtain a program that is less feasible than what we expected since
choices have been prematurely pruned. The preference operator we desire is
intuitively sandwiched in between nondeterministic and biased choice within
the standard refinement lattice, but equivalent to neither of them:

S ⊓ T ⊑p S ≫ T ⊑p S ⊞ T (1)

A question naturally arises whether our notion of preference can even be
defined in standard wp semantics. It turns out that this is not the case
(see Appendix D). To our rescue comes the theory of prospective values.
We already mentioned a link between pv and wp semantics that shows that
pv semantics is at least as discriminating as wp semantics. A profound insight
is that it is also genuinely more expressive since we can define S≫T ⋄ E
within it as (S ⋄ E) ▷ (T ⋄ E). Unfolding the bunch preference operator
and folding the pv effect of guards and choice yields the following alternative
but equivalent formulation:

S≫T ⋄ E =̂ (S ⊓ (S ⋄ E) = null −→ T) ⋄ E

We observe that this is very similar to Nelson’s biased choice, however, in-
stead of ¬ fis(S) we have the predicate (S ⋄ E) = null . We can think of
the latter as a more subtle notion of feasibility that takes into account the

14

continuation via the expression E . It elucidates that bunches contain more
information than predicates. For instance, a true (weakest) precondition does
not contain information of how the postcondition was established — that is,
either by a terminating behaviour or vacuously by a miracle. The prospective
value gives us this residual bit of information via the test E = null , and this
facilitates a semantic characterisation of preference that indeed backtracks
from infeasibility.

We introduce the synonym fis#(S ,E) =̂ (S ⋄ E)̸=null as a notion of
feasibility that is sensitive to the continuation E . With this we have:

S≫T ⋄ E = (S ⊓ ¬ fis#(S ,E) −→ T) ⋄ E

The above is indeed Nelson’s definition of S ⊞ T with fis(S) being replaced
by fis#(S ,E). By using the rules in Table 1, we can convince ourselves that
preference indeed exhibits the desired backtracking.

A downside of preference, as noted in Section 4, is that it is not monotonic
with respect to standard refinement in the first operand. This trivially implies
that it cannot be monotonic with respect to feasibility-preserving refinement
either. To illustrate this, we consider the program x := 1 ≫ x := 2. The per-
missible standard refinement of x := 1 into reverse yields reverse ≫ x := 2,
which is equivalent to x := 2. Using the pv rule for preference, we can show
that x := 1 ≫ x := 2 ̸⊑ x := 2 or, more generally, (S ≫ T) ̸⊑ T . We thus
cannot discard the first choice of a preference. We are, however, entitled to
discard the second choice, as per the law (S ≫ T) ⊑ S . Preference is indeed
monotonic with respect to both refinement notions in the second operand,
namely T ⊑[∗] T ′ implies S ≫ T ⊑[∗] S ≫ T ′.

A fundamental preference law is that we can refine nondeterministic
choice into preferential choice.

Law 5 (pref-intro). Let S and T be bGSL programs. Then,

S ⊓ T ⊑∗ S ≫ T

We shall discuss the proof of this key law in detail. First, to discharge
the feasibility caveat [fis(S ⊓ T) ⇒ fis(S ≫ T)], we prove the following
structural rule: fis(S ≫ T) = fis(S) ∨ fis(T).

fis(S ≫ T) {definition of feasibility}
= ¬ (S ≫ T) ⋄ ⊥ = null {pv of preference}
= ¬ (S ⋄ ⊥) ▷ (T ⋄ ⊥) = null { E ▷ F = null

⇔ E = null ∧ F = null }
= ¬ (S ⋄ ⊥ = null ∧ T ⋄ ⊥ = null) {logic}
= ¬ S ⋄ ⊥ = null ∨ ¬ T ⋄ ⊥ = null {definition of feasibility}
= fis(S) ∨ fis(T)

15

The feasibility caveat now follows trivially since fis(S ⊓ T) likewise can be
shown to evaluate to fis(S) ∨ fis(T).

Second, we prove the refinement S ⊓ T ⊑ S ≫ T .

S ⊓ T ⊑ S ≫ T {definition of refinement}
= (S ≫ T ⋄ E) : (S ⊓ T ⋄ E) {pv of preference and choice}
= (S ⋄ E ▷ T ⋄ E) : (S ⋄ E ,T ⋄ E) {bunch law: (E ▷ F) : E ,F}
= true

Above, we make use of two laws for bunch preference. For brevity, we omit
their proofs in the paper, as they are altogether not difficult to establish
using the definition of bunch preference.

Law 5 is special in that it can be compositionally applied even in non-
monotonic operator positions.

6. Programming in bGSL: the Minimax Algorithm

A downside of only having guarded and choice constructs for backtrack-
ing is the following limit of expressivity: when backtracking, we inevitably
lose any result that has been obtained by the computation up to the point
where we encounter an infeasible guard. This makes it difficult to implement
solutions for certain kinds of algorithmic problems in our paradigm. In this
section, we show how bGSL’s prospective values and preference can be used
to overcome this limitation.

As an example, we consider the minimax algorithm (Russell and Norvig,
2009), an algorithm for choosing the best next move in an n-player game
(usually of two players). Each game position has an associated value (score)
for the first player. The idea behind minimax is that the first player should
choose a move that maximises that score, assuming that the second player
similarly tries to minimise it. A first attempt to design the algorithm in
bGSL for a depth of two plies could be

minimax =̂

(
a move1 ⊓ a move2 ⊓ . . . ;
b move1 ⊓ b move2 ⊓ . . . ;
score := eval(state) ; reverse

)
We have a sequence of four statements. The first statement performs a move
for player A. The second performs a move for player B . The third statement
evaluates the game position and assigns the result to a global variable score;
this is by virtue of a function eval() on the program state. We then use
reverse to explore all combinations of moves.

The issue with this design is that whatever the value of score may be-
come after we performed a move, it is inevitably restored during backtracking

16

caused by reverse. We therefore cannot carry out the min and max con-
struction that is central to the algorithm, namely to determine the best move
for player A.

In general, dynamic programming relies on search procedures propagating
intermediate results between different branches of a traversal tree. Those
results are used, for instance, to prune the tree — alpha-beta pruning (Russell
and Norvig, 2009) achieves this for minimax — or, in some cases, to apply
heuristics that control traversal to make it more efficient. We note that this
style of programming is not natively possible with guards and choice alone
because intermediate results are lost during backtracking, and thus cannot
be reused in other branches of the search.

Prospective values. To overcome this limitation, bGSL supports prospec-
tive values as program expressions. The prospective value S ⋄ E does not
have a side effect and hence retains referential transparency of the expression
language. With prospective values, we can implement a two-ply minimax al-
gorithm as sketched by the program below.

a move =̂ a move1 ⊓ a move2 ⊓ . . . ; score := min {b move ⋄ score}
b move =̂ b move1 ⊓ b move2 ⊓ . . . ; score := eval(state)

minimax =̂

 scores := {a move ⋄ (move 7→ score)} ;

best move :=

(
ϵ move •

(
move ∈ dom(scores) ∧
scores(move) = max ran(scores)

))
The local definition b move performs a move for player B and then as-
signs the evaluated game position to the variable score. The local program
a move does so accordingly for player A, while making use of b move within
the prospective-value term min {b move ⋄ score}. The latter wraps into a
set the bunch of results obtained for score by executing b move, and then
calculates the minimum of that set (via the min function). To determine the
best move for player A, we first construct a relation scores that maps moves
of player A to their highest expected scores. This is done with the help of
a local variable move that we assume to be set appropriately in a move1,
a move2, and so on. Hilbert’s ϵ is used to pick a best move amongst those
that maximise the score for all moves of player A recorded in the scores
relation; the possible moves and scores within scores can be conveniently
obtained via its domain (dom) and range (ran).

Use of preference to encode heuristics. An optimised version of the
minimax algorithm above may rank and explore moves of player A according
to some heuristic that can identify more promising moves. Looking for the
universally best move is often not feasible due to the exponential growth
in complexity when increasing the number of plies. For some scenarios, a
more efficient strategy may be to dynamically search for a move that has
a score above a given threshold. With preference, we can easily design an

17

implementation for this strategy. The miniopt program below captures it.

a move =̂ a moveπ(1) ≫ a moveπ(2) ≫ · · · ; score := min {b move ⋄ score}
b move =̂ b move1 ⊓ b move2 ⊓ . . . ; score := eval(state)

miniopt =̂

(
@ score,move •

(
a move ;
score < threshold −→ reverse ;
best move := move

))
≫ abort

Here, we use a sequential guard to explore all choices of moves for player
A in a move. Choices are explored in a predefined order that is a priori
fixed here by the permutation π, which acts as a heuristic for ranking moves.
The outer preference with abort guarantees feasibility even if no permissible
move is found — in that case we make no guarantees and results obtained for
best move are undefined then. Exploration stops when a move choice passes
the guard.

Refinement in bGSL. The starting point for a formal development is
the original minimax with scores(move) = max ran(scores) replaced by
scores(move) ≥ threshold in the epsilon term. We first refine it into the
following program which retains nondeterminism in a move. This is mostly
using standard GSL laws and a specialised law to eliminate the pv assignment
scores := {a move ⋄ . . . } and ϵ term.

a move =̂ a move1 ⊓ a move2 ⊓ · · · ; score := min {b move ⋄ score}
b move =̂ b move1 ⊓ b move2 ⊓ · · · ; score := eval(state)

miniopt =̂

(
@ score,move •

(
a move ;
score ≤ threshold −→ reverse ;
best move := move

))
≫ abort

The final step of the refinement is the introduction of preference in a move,
imposing an order on move choices. This last step is justified by composi-
tional application of Law 5. (We note that a move occurs in a non-monotonic
position due to the outer preference.) The feasibility caveat is established
independently by the structural rules in Table 1, adopting Strategy 2 on
page 12.

7. Conclusion

We have presented the syntax and semantics of bGSL, a refinement lan-
guage for the development of backtracking programs. Our work links and
expands on several earlier ideas that have been investigated to some extent
in isolation: feasibility-preserving refinement (Zeyda et al., 2003), prospective
values (Zeyda et al., 2005) and preference (Stoddart et al., 2010). A novel
contribution here is a detailed analysis of monotonicity issues, a justification
of the semantic foundations of bGSL via pv transformers, and validated laws
for refinement to overcome emerging monotonicity issues. We have thereby

18

laid the foundations for a refinement theory and calculus for bGSL that sup-
port verification of backtracking programs.

Setting out from the basic premise of using demonic choice and program
miracles to perform backtracking, we explored how limitations of this ap-
proach can be overcome. Most interestingly, we showed that pv semantics
facilitates a model of computation that is genuinely more expressive than
monotonic predicate transformers. Monotonicity was for a long time thought
of as fundamental to any useful model of computation; our work here chal-
lenges that view.

A related work is Nelson’s “Language of the Included Miracle” (LIM) (Nel-
son, 2005). Nelson starts from a similar premise: using choice and guards to
perform backtracking. However, he does not examine refinement issues in
detail. Furthermore, he only provides deterministic choice. Stoddart et al.
(2010) investigate an alternative ‘temporal order of continuation’ seman-
tics that makes implementor’s and backtracking choice orthogonal. Though
this leads to better monotonicity properties, it results in a less tractable
refinement calculus with fewer laws. A framework that does address refine-
ment in much detail is Hoare and Jifeng’s Unifying Theories of Programming
(UTP) (Hoare and Jifeng, 1998). However, to the best of our knowledge, ex-
isting UTP theories, such as UTP Designs, cannot be used out-of-the-box to
model preference, and it is unclear how to combine existing UTP theories
towards a predicative model of preferential computations — although this
could be an interesting piece of work in its own right. We believe that it is
fundamentally feasible to define a UTP-based theory of the language that
we present in this paper, but it is unclear how non-deterministic and pref-
erential choice would combine in a denotational semantics that is based on
predicates.

Future work. As future work, we plan to encode bGSL’s pv semantics in
a theorem prover. We have already done complementary work that uses a
three-valued Gödel-Dummet Logic to define a wp calculus that is expressive
enough to encode preferential computations (Zeyda, 2022). Various laws
have been proved in a mechanised theory within Isabelle/HOL, and we are
currently trying to formally establish an isomorphism to the pv semantics
presented in this paper. This would immediately transfer the validity of all
laws, including a Galois connection between GSL and bGSL that justifies
compositional refinement of S ⊓ T into S ≫ T . This work will provide
strong evidence for the soundness of the bGSL refinement calculus.

We also intend to develop more case studies demonstrating the value of
combining prospective values with preference. For example, we have mod-
elled a Knight’s Tour solver that uses preference to encode Warndorf’s heuris-

19

tic (von Warnsdorf, 1823). We plan to encode solutions to the solitaire-like
games presented by Backhouse et al. (2010, 2013). It would also be inter-
esting to explore applications of this work in creative AI, such as narrative
generation (Martens et al., 2013, 2014). For example, bGSL can be used to
encode a narrative generator where preference would allow to prioritize cer-
tain sub-plots. Moreover, we plan to elicit refinement patterns and strategies
in bGSL for the development of systems that involve autonomous control and
decision making; we claim that our language is tailored for such systems as it
natively supports the verification for constraint problem solvers. In the area
of security, it would be interesting to explore the use of bGSL to concisely ex-
press password cracking algorithms: since some password patterns are more
likely than others, preference can be used to guide the generation process,
thus producing more likely passwords first (Johnson et al., 2020; Grilo et al.,
2022). Other opportunities we envisage in the area of security is where infor-
mation erasure (e.g., through reversibility) may in fact be required to ensure
safe and secure operations.

Finally, one of the anonymous reviewers of this paper brought to our
attention that Groves (2002) addressed similar monotonicity concerns with
respect to refinement regarding the Z schema calculus. Groves’s solution was
to decompose the standard refinement relation into two simpler (pre and
post refinement) relations that made refinement in Z more mathematically
tractable. As future work, it would be interesting to study if our refinement
relation admits a similar kind of factorization.

Acknowledgements

The authors would like to thank the anonymous reviewers, whose com-
ments and corrections have led to significant improvements. The authors are
also grateful to Teesside University for the Staff Club, where many fruitful
and joyful research meetings on this topic were held.

João F. Ferreira and Alexandra Mendes would like to thank Lúıs Soares
Barbosa for showing them the beauty of mathematical approaches to software
quality and for encouraging and supporting them in their pursuit of a career
in academia. Since their undergraduate studies, Lúıs has inspired them with
his work, passion, and kindness. They will always be grateful for having the
privilege of his friendship.

This work was partially funded by the PassCert project, a CMU Por-
tugal Exploratory Project funded by Fundação para a Ciência e a Tecnolo-
gia (FCT), with reference CMU/TIC/0006/2019 and supported by national
funds through FCT under project UIDB/50021/2020.

20

References

W. J. Stoddart, A. R. Lynas, F. Zeyda, A Virtual Machine for Supporting
Reversible Probabilistic Guarded Command Languages, Electronic Notes
in Theoretical Computer Science 253 (2010) 33–56. doi:10.1016/j.entcs.
2010.02.005, the RVM is openly available from Sourceforge: https://

sourceforge.net/projects/rvm-forth/.

R. Landauer, Irreversibility and Heat Generation in the Computing Process,
IBM Journal of Research and Development 5 (1961) 183–191. doi:10.1147/
rd.53.0183.

E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation
of programs, Communications of the ACM 18 (1975) 453–457.

J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge
University Press, New York, NY, USA, 1996.

D. Crocker, Perfect Developer: A tool for Object-Oriented Formal Specifi-
cation and Refinement, in: In Tools Exhibition Notes at Formal Methods
Europe, 2003.

P. Zuliani, Logical reversibility, IBM Journal of Research and Development
45 (2001) 807–818. doi:10.1147/rd.456.0807.

E. W. Dijkstra, A Discipline of Programming, Prentice Hall, Upper Saddle
River, NJ, USA, 1976.

C. C. Morgan, T. Vickers, On the Refinement Calculus, Springer, 1992.

F. Zeyda, W. J. Stoddart, S. E. Dunne, A Prospective-Value Semantics for
the GSL, in: ZB 2005: Formal Specification and Development in Z and
B, volume 3455 of Lecture Notes in Computer Science, Springer, 2005, pp.
187–202. doi:10.1007/11415787_12.

W. J. Stoddart, F. Zeyda, S. E. Dunne, Preference and Non-deterministic
Choice, in: Theoretical Aspects of Computing — ICTAC 2010, volume
6255 of Lecture Notes in Computer Science, Springer, 2010, pp. 137–152.
doi:10.1007/978-3-642-14808-8_10.

F. Zeyda, W. J. Stoddart, S. E. Dunne, The Refinement of Reversible Com-
putations, in: RCS’03: 2nd International Workshop on Refinement of
Critical Systems: Methods, Tools and Developments, 2003.

21

http://dx.doi.org/10.1016/j.entcs.2010.02.005
http://dx.doi.org/10.1016/j.entcs.2010.02.005
https://sourceforge.net/projects/rvm-forth/
https://sourceforge.net/projects/rvm-forth/
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.456.0807
http://dx.doi.org/10.1007/11415787_12
http://dx.doi.org/10.1007/978-3-642-14808-8_10

R. J. R. Back, J. von Wright, Combining angels, demons and miracles in
program specifications, Theoretical Computer Science 100 (1992) 365–383.
doi:10.1016/0304-3975(92)90309-4.

E. C. R. Hehner, Bunch theory: A simple set theory for computer sci-
ence, Information Processing Letters 12 (1981) 26–30. doi:10.1016/
0020-0190(81)90071-5.

J. M. Morris, A. Bunkenburg, A theory of bunches, Acta Informatica 37
(2001) 541–561. doi:10.1007/PL00013316.

E. C. H. Hehner, A Practical Theory of Programming, Monographs in
Computer Science, Springer, 1993. Available online at http://www.cs.

toronto.edu/~hehner/aPToP/.

F. Zeyda, Reversible Computations in B, Ph.D. thesis, Teesside University,
School of Computing, Middlesbrough, TS1 3BA, UK, 2007.

G. Nelson, A Generalization of Dijkstra’s Calculus, ACM Transactions on
Programming Languages and Systems 11 (1989) 517–561. doi:10.1145/
69558.69559.

J. M. Morris, A. Bunkenburg, M. Tyrrell, Term Transformers: A New Ap-
proach to State, ACM Transactions on Programming Languages and Sys-
tems 31 (2009) 16:1–16:42. doi:10.1145/1516507.1516511.

J. M. Morris, A. Bunkenburg, A source of inconsistency in theories of nonde-
terministic functions, Science of Computer Programming 43 (2002) 77–89.
doi:10.1016/S0167-6423(01)00022-3.

F. Zeyda, An Extended wp Calculus for Preferential Computations,
Technical Report, Teesside University, Middlesbrough, TS1 3BA, UK,
2022. Available from: https://joaoff.com/publication/2022/JLAMP/
WPE-report.pdf.

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (3rd Edi-
tion), Prentice Hall, Upper Saddle River, NJ, USA, 2009.

G. Nelson, LIM and Nanoweb, Technical Report HPL-2005-41, Imaging Sys-
tems Laboratory, HP Laboratories Palo Alto, 2005.

C. A. R. Hoare, H. Jifeng, Unifying theories of programming, volume 14,
Prentice Hall Englewood Cliffs, 1998.

22

http://dx.doi.org/10.1016/0304-3975(92)90309-4
http://dx.doi.org/10.1016/0020-0190(81)90071-5
http://dx.doi.org/10.1016/0020-0190(81)90071-5
http://dx.doi.org/10.1007/PL00013316
http://www.cs.toronto.edu/~hehner/aPToP/
http://www.cs.toronto.edu/~hehner/aPToP/
http://dx.doi.org/10.1145/69558.69559
http://dx.doi.org/10.1145/69558.69559
http://dx.doi.org/10.1145/1516507.1516511
http://dx.doi.org/10.1016/S0167-6423(01)00022-3
https://joaoff.com/publication/2022/JLAMP/WPE-report.pdf
https://joaoff.com/publication/2022/JLAMP/WPE-report.pdf

H. C. von Warnsdorf, Des Rösselsprunges einfachste und allgemeinste
Lösung, Th. G. Fr. Varnhagensehen Buchhandlung (1823).

R. Backhouse, W. Chen, J. F. Ferreira, The algorithmics of solitaire-like
games, in: International Conference on Mathematics of Program Con-
struction, Springer, Berlin, Heidelberg, 2010, pp. 1–18.

R. Backhouse, W. Chen, J. F. Ferreira, The algorithmics of solitaire-like
games, Science of Computer Programming 78 (2013) 2029–2046.

C. Martens, A.-G. Bosser, J. F. Ferreira, M. Cavazza, Linear logic pro-
gramming for narrative generation, in: International Conference on Logic
Programming and Nonmonotonic Reasoning, Springer, Berlin, Heidelberg,
2013, pp. 427–432.

C. Martens, J. F. Ferreira, A.-G. Bosser, M. Cavazza, Generative story worlds
as linear logic programs, in: Seventh Intelligent Narrative Technologies
Workshop, 2014.

S. Johnson, J. F. Ferreira, A. Mendes, J. Cordry, Skeptic: Automatic, jus-
tified and privacy-preserving password composition policy selection, in:
Proceedings of the 15th ACM Asia Conference on Computer and Commu-
nications Security, 2020, pp. 101–115.

M. Grilo, J. Campos, J. F. Ferreira, J. B. Almeida, A. Mendes, Verified
password generation from password composition policies, in: International
Conference on Integrated Formal Methods, Springer, 2022, pp. 271–288.

L. Groves, Refinement and the z schema calculus, Electronic Notes in The-
oretical Computer Science 70 (2002) 70–93.

23

Appendix A. The wp semantics and feasibility of the GSL

Construct Syntax: C Semantics: wp(C,Q) Feasibility: fis(C)
Skip skip Q true

Assignment x := E Q [x\E] true

Sequence S ; T wp(S ,wp(T ,Q)) wp(S , fis(T))

Precondition p | S p ∧ wp(S ,Q) p ⇒ fis(S)

Guard g −→ S g ⇒ wp(S ,Q) g ∧ fis(S)

Choice S ⊓ T wp(S ,Q) ∧ wp(T ,Q) fis(S) ∨ fis(T)

Preference S ≫ T not definable fis(S) ∨ fis(T)

Unbounded Choice @ x • S ∀ x • wp(S ,Q) ∃ x • fis(S)

Refinement S ⊑ T ∀Q • wp(S ,Q) ⇒ wp(T ,Q)

Above, x is a variable, g , p and Q are predicates, and S and T are pro-
grams. The conjugate weakest-precondition wp(S ,Q) is defined as ¬ wp(S ,¬ Q).
The third column follows from the definition of feasibility: fis(S) =̂ wp(S , true).

Appendix B. The interplay of guards and choice

The following proof illustrates the backtracking property of guards and
nondeterministic choice, using the example on page 1 and wp rules above.

wp(x := 1 ⊓ x := 2; x = 2 −→ skip,Q) {wp of sequence}
= wp(x := 1 ⊓ x := 2,wp(x = 2 −→ skip,Q)) {wp of guard}
= wp(x := 1 ⊓ x := 2, x = 2 ⇒ wp(skip,Q)) {wp of skip}
= wp(x := 1 ⊓ x := 2, x = 2 ⇒ Q) {wp of choice}
= wp(x := 1, x = 2 ⇒ Q) ∧ wp(x := 2, x = 2 ⇒ Q) {wp of assignment}
= (x = 2 ⇒ Q)[x\1] ∧ (x = 2 ⇒ Q)[x\2] {substitution}
= (1 = 2 ⇒ Q [x\1]) ∧ (2 = 2 ⇒ Q [x\2]) {logic}
= Q [x\2] {wp of assignment}
= wp(x := 2,Q)

This proves the equivalence of the above program to x := 2, as it was claimed
on page 2 of the introduction. Exploiting it in computations offers new and
interesting ways to specify programs that use nondeterminism not merely
to characterise “don’t care” situations but also to provide, for instance, the
alternatives of a search algorithm.

24

Appendix C. Proof of Law 4 (seq-fisref-mono)

We assume the proviso [fis(U)] and S ⊑∗T . We show that S ; U ⊑∗T ; U .

S ; U ⊑∗T ; U {definition of ⊑∗}

=

(
S ; U ⊑ T ; U ∧
[fis(S ; U) ⇒ fis(T ; U)]

)
{monotonicity of sequence w.r.t. ⊑}

= fis(S ; U) ⇒ fis(T ; U) {feasibility of sequence}
= wp(S , fis(U)) ⇒ wp(T , fis(U)) {assumption [fis(U)]}
= wp(S , true) ⇒ wp(T , true) {definition of fis(S)}
= fis(S) ⇒ fis(T) {assumption S ⊑∗T}

Appendix D. Preference cannot be defined in wp semantics (!)

To show this, we try to elicit the wp model of the program x := 1 ≫ x := 2
to establish x = 1 where x ranges over a type containing only two values
{1, 2}. Because x := 1 is executed first, we expect wp(x := 1 ≫ x := 2, x =
1) to hold (⋆). Secondly, let us consider the wp effect of that program
sequenced with x = 2 −→ skip to establish the same postcondition.

wp(x := 1 ≫ x := 2; x = 2 −→ skip, x = 1) {wp of sequence}
= wp(x := 1 ≫ x := 2,wp(x = 2 −→ skip, x = 1)) {wp of guard}
= wp(x := 1 ≫ x := 2, x = 2 ⇒ wp(skip, x = 1)) {wp of skip}
= wp(x := 1 ≫ x := 2, x = 2 ⇒ x = 1) {logic}
= wp(x := 1 ≫ x := 2, x ̸= 2 ∨ x = 1) {typing}
= wp(x := 1 ≫ x := 2, x = 1) = true {assumption (⋆)}

This contradicts our intuition of the program, namely we would expect the
above wp effect to be false since the guard x = 2 −→ skip is disabled by
the preferred choice x := 1, and this ought to result in backtracking and the
second program x := 2 being executed. The latter, clearly, cannot establish
x = 1.

The assumptions we made are that wp(x := 1 ≫ x := 2, x = 1) is
equivalent to true and that sequence, guards and skip have their usual wp
meanings as in Appendix A. This is enough to derive the result above which
contradicts our operational intuition of the operator. There appears to be
no sensible way to trade our assumptions. Hence, this suggests that S ≫ T
cannot be defined as a wp predicate transformer with the desired properties,
unless perhaps we put into question the core semantics of constructs like
sequence and guards.

25

Appendix E. Backtracking from infeasibility of a continuation

Below is a proof that demonstrates how our pv definition of preference
has the desired property of backtracking form infeasibility of a continuation.

x := 1 ≫ x := 2; x = 2 −→ skip ⋄ E {pv of sequence}
= x := 1 ≫ x := 2 ⋄ x = 2 −→ skip ⋄ E {pv of guard and skip}
= x := 1 ≫ x := 2 ⋄ x = 2 → E {pv of preference}
= (x := 1 ⋄ x = 2 → E) ▷ (x := 2 ⋄ x = 2 → E) {pv of assignment}
= (1 = 2 → (λ x • E) 1) ▷ (2 = 2 → (λ x • E) 2) {simpl. of bunch guards}
= null ▷ (λ x .E) 2 {bunch law: null ▷ E = E}
= (λ x .E) 2 {pv of assignments}
= x := 2 ⋄ E

This proves the equivalence of x := 1 ≫ x := 2 ; x = 2 −→ skip and
x := 2 in pv semantics. It is instructive to compare this proof to the one in
Appendix D.

Appendix F. Monotonicity loss of preferential computations

In this appendix we present two counterexamples that highlight the loss
of monotonicity of preferential computations with respect to standard refine-
ment (⊑).

Sequence in the second operand. First, we have skip ⊑ reverse since
reverse, being synonymous for magic, is the top of the refinement lattice.
However,

(skip ≫ abort) ; skip ̸⊑ (skip ≫ abort) ; reverse

because the right-hand program (skip ≫ abort) ; reverse is actually equiv-
alent to abort due to the backtracking caused by reverse. And abort does
not refine skip (or indeed any program other than itself).

Preference in the first operand. As before, we assume skip ⊑ reverse.
We have

(skip ≫ abort) ̸⊑ (reverse ≫ abort)

because the right-hand program (reverse ≫ abort) is equivalent abort
due to the key algebraic law (reverse ≫ S) = S for preference, which can
be easily verified using the rules in Table 1. Clearly, the left-hand program
skip ≫ abort is not equivalent to abort when the continuation persists to
be feasible.

26

	Introduction
	Preliminaries: Bunch Theory
	Backtracking GSL: Syntax and Semantics
	Refinement in bGSL
	Preferential Computations
	Programming in bGSL: the Minimax Algorithm
	Conclusion
	The wp semantics and feasibility of the GSL
	The interplay of guards and choice
	Proof of Law 4 (seq-fisref-mono)
	Preference cannot be defined in wp semantics (!)
	Backtracking from infeasibility of a continuation
	Monotonicity loss of preferential computations

