Exploring Automatic Specification Repair in Dafny Programs

Abstract

Formal verification has become increasingly crucial in ensuring the accurate and secure functioning of modern software systems. Given a specification of the desired behaviour, i.e. a contract, a program is considered to be correct when all possible executions guarantee the specification. Should the software fail to behave as expected, then a bug is present. Most existing research assumes that the bug is present in the implementation, but it is also often the case that the specified expectations are incorrect, meaning that it is the specification that must be repaired. Research and tools for providing alternative specifications that fix details missing during contract definition, considering that the implementation is correct, are scarce. This paper presents a preliminary tool, focused on Dafny programs, for automatic specification repair in contract programming. Given a Dafny program that fails to verify, the tool suggests corrections that repair the specification. Our approach is inspired by a technique previously proposed for another contract programming language and relies on Daikon for dynamic invariant inference. Although the tool is focused on Dafny, it makes use of specification repair techniques that are generally applicable to programming languages that support contracts. Such a tool can be valuable in various scenarios, such as when programmers have a reference implementation and need to analyse their contract options, or in educational contexts, where it can provide students with hints to correct their contracts. The results of the evaluation show that the approach is feasible in Dafny and that the overall process has reasonable performance but that there are stages of the process that need further improvements

Publication
In 5th International Workshop on Automated and verifiable Software sYstem DEvelopment, 2023,Co-located with the 38th IEEE/ACM International Conference on Automated Software Engineering.
Avatar
Alexandra Mendes
Assistant Professor

My research focuses on encouraging a wider adoption of software verification by creating tools and methods that hide the complexities of verifying software. Recently, I started work on usable security, in particular on the impact of formal verification on the use and adoption of formally verified security software products. Much of my most recent work overlaps with the area of software engineering. For more details, see selected publications and some of my projects. Follow me on Twitter or add me on LinkedIn.