
Contract Usage and Evolution in Android Mobile1

Applications2

David R. Ferreira #3

Faculty of Engineering, University of Porto, Porto, Portugal4

Alexandra Mendes #5

INESC TEC, Faculty of Engineering, University of Porto, Portugal6

João F. Ferreira #7

INESC-ID & IST, University of Lisbon, Lisbon, Portugal8

Carolina Carreira #9

Carnegie Mellon University, INESC-ID & IST, University of Lisbon, Lisbon, Portugal10

Abstract11

Contracts and assertions are effective methods to enhance software quality by enforcing preconditions,12

postconditions, and invariants. Previous research has demonstrated the value of contracts in13

traditional software development. However, the adoption and impact of contracts in the context of14

mobile app development, particularly of Android apps, remain unexplored.15

To address this, we present the first large-scale empirical study on the use of contracts in16

Android apps, written in Java or Kotlin. We consider contract elements divided into five categories:17

conditional runtime exceptions, APIs, annotations, assertions, and other. We analyzed 2,390 Android18

apps from the F-Droid repository and processed more than 52,977 KLOC to determine 1) how and19

to what extent contracts are used, 2) which language features are used to denote contracts, 3) how20

contract usage evolves from the first to the last version, and 4) whether contracts are used safely in21

the context of program evolution and inheritance. Our findings include: 1) although most apps do22

not specify contracts, annotation-based approaches are the most popular; 2) apps that use contracts23

continue to use them in later versions, but the number of methods increases at a higher rate than24

the number of contracts; and 3) there are potentially unsafe specification changes when apps evolve25

and in subtyping relationships, which indicates a lack of specification stability. Finally, we present26

a qualitative study that gathers challenges faced by practitioners when using contracts and that27

validates our recommendations.28

2012 ACM Subject Classification Software and its engineering → System description languages;29

Software and its engineering → Software development techniques; Software and its engineering →30

Software verification and validation31

Keywords and phrases Contracts, Design by Contract, DbC, Android, Java, Kotlin32

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2025.1733

Supplementary Material Software: https://github.com/sr-lab/contracts-android34

Acknowledgements We thank the anonymous reviewers for their valuable feedback, which helped35

improve the quality of this paper. This work was supported by Fundação para a Ciência e a Tecnologia36

(FCT): João F. Ferreira by projects UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020) and the37

‘InfraGov’ project, with ref. n. 2024.07411.IACDC (DOI: 10.54499/2024.07411.IACDC), funded by38

the ‘Plano de Recuperação e Resiliência (PRR)’ under the investment ‘RE-C05-i08 - Ciência Mais39

Digital’, measure ‘RE-C05-i08.M04’ (in accordance with the FCT Notice No. 04/C05 i08/2024),40

framed within the financing agreement signed between the ‘Estrutura de Missão Recuperar Portugal41

(EMRP)’ and the FCT as an intermediary beneficiary; Carolina Carreira by the project VeriFixer,42

with reference 2023.15557.PEX (DOI: 10.54499/2023.15557.PEX). Alexandra Mendes was financed43

by National Funds through the Portuguese funding agency, FCT, within project LA/P/0063/202044

(DOI: 10.54499/LA/P/0063/2020).45

© David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 17; pp. 17:1–17:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.regatia@gmail.com
mailto:alexandra@archimendes.com
https://orcid.org/0000-0001-8060-5920
mailto:joao@joaoff.com
https://orcid.org/0000-0002-6612-9013
mailto:carolinacarreira@cmu.edu
https://orcid.org/0000-0002-4526-6510
https://doi.org/10.4230/LIPIcs.ECOOP.2025.17
https://github.com/sr-lab/contracts-android
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Contract Usage and Evolution in Android Mobile Applications

1 Introduction46

Building reliable mobile applications is a growing concern, as they are increasingly used in47

critical domains such as health, finance, and government. There are now more mobile phones48

than people in the world1 with more than 2 million apps available in the App Store and49

Google Play [37]. Additionally, data from 2024 shows that Android is the most used platform50

(47%), followed by Windows (26%), and then iOS (18%) [35]. Therefore, faults in mobile51

apps, and particularly in Android apps, can impact a very large number of users. In addition,52

with an increasing number of apps in critical areas such as health and finance, faults can53

have a huge negative impact. It is thus important to use software reliability techniques when54

developing mobile applications.55

One of these techniques is Design by Contract (DbC) [26], under which software systems are56

seen as components that interact amongst themselves based on precisely defined specifications57

of client-supplier obligations (contracts). Suppliers expect that certain conditions are met by58

the client before using the component (preconditions), maintain certain properties from entry59

to exit (invariants), and guarantee that certain properties are met upon exit (postconditions).60

These contracts are written as assertions in the code. Currently, there are assertion capabilities61

in most programming languages, but assertions are not universally used.62

Current efforts in academia and industry show that DbC [27] is an active topic of interest63

to the software industry, with companies such as Amazon Web Services and Consensys64

investing largely in the development of tools such as Dafny [25]. Additionally, the creation65

of tools like Verus [23] for correctness verification in Rust, further underline its importance.66

Such tools use DbC in the specifications used for formal verification.67

DbC can help identify failures [4], improve code understanding [16], and improve testing68

efforts [36]. This has led to a number of empirical studies on the use of contracts in a variety69

of contexts [10, 33, 15, 9, 22, 21, 12, 13]. However, there are no previous studies on the70

presence and usage of contracts in Android applications nor any study that includes the71

Kotlin language.72

We present the first large-scale empirical study of contract usage in Android mobile apps73

written in Java or Kotlin. Our goal is to understand 1) how and to what extent contracts are74

used, 2) which language features are used to denote contracts, 3) how contract usage evolves75

from the first to the last version, and 4) whether contracts are used safely in the context of76

program evolution and inheritance. Information on how practitioners use contracts can help77

create and improve tools and libraries by researchers and tool builders [33]. Also, empirical78

evidence about the benefits of contracts can encourage their adoption by practitioners and79

the establishment of DbC as a software design standard [36].80

In summary, the contributions of this paper are:81

The first large-scale empirical study about contract usage and evolution in Android apps,82

resulting in a list of findings and recommendations for practitioners, researchers, and tool83

builders. No previous studies consider Kotlin.84

A list of language features, tools, and libraries to represent contracts in Android applica-85

tions.86

A dataset of 1,767 Java and 623 Kotlin Android apps, together with scripts that can be87

used to build large-scale datasets of Android apps.88

1 https://www.weforum.org/agenda/2023/04/charted-there-are-more-phones-than-people-in-the-world/
(last accessed on 01 April 2025)

https://www.weforum.org/agenda/2023/04/charted-there-are-more-phones-than-people-in-the-world/

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:3

Table 1 Contract elements considered in this study

category examples
CREs IllegalArgumentException
(74 constructs) EmptyStackException

SecurityException
UnsupportedOperationException
AccessControlException
IndexOutOfBoundsException
NullPointerException

APIs org.apache.commons.lang.Validate.*
(31 constructs) org.apache.commons.lang3.Validate.*

com.google.common.base.Preconditions.*
org.springframework.util.Assert.*

Assertions assert (Java)
(6 constructs) assert (Kotlin)

check(), checkNotNull() (Kotlin)
require(), requireNotNull() (Kotlin)

Annotations org.jetbrains.annotations.*
(136 constructs) org.intellij.lang.annotations.*

edu.umd.cs.findbugs.annotations.*
android.annotation.*
androidx.annotation.*
javax.annotation.* (JSR305)

Other @ExperimentalContracts (Kotlin)
(1 construct)

An updated and extended version of Dietrich et al.’s tool [13], which can now analyze89

Kotlin code and can be used to investigate additional Android-specific contracts.90

A user study that validates our recommendations and contributes with further suggestions91

from practitioners for increasing contract usage.92

Even though we update and extend Dietrich et al.’s tool [13], our work is not a replication of93

their study. Our study differs from theirs by focusing on Android apps and not on Java apps94

only. Due to the focus on Android, our study considers Kotlin in addition to Java, as since95

2019, Kotlin is the preferred language for Android app developers2. Further, Kotlin is now96

used by over 60% of Android professional developers3.97

As mentioned above, similar studies to ours have been conducted for different ecosystems,98

because investigating how developers use contracts can inform future developments that99

make DbC more effective in practice, thus increasing software reliability.100

Data & Artifact Availability. To support our study, an artifact was developed to101

automatically collect contracts from Android applications and to produce the necessary102

empirical data. The artifact is written in Python and Java, and includes an extension of103

the tool proposed by Dietrich et al. [13]. All the code and datasets are publicly available:104

https://github.com/sr-lab/contracts-android105

2 Contracts in Android Applications106

Our notion of contract follows from the theory of design by contract [26], where preconditions,107

postconditions, and invariants are used to document (and specify) state changes that might108

2 https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred (last accessed on 01 April 2025)
3 https://developer.android.com/kotlin (last accessed on 01 April 2025)

ECOOP 2025

https://github.com/sr-lab/contracts-android
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development
https://developer.android.com/kotlin

17:4 Contract Usage and Evolution in Android Mobile Applications

occur in a program. Pre and postconditions are associated with individual methods and109

constrain their input and output values. On the other hand, invariants are associated with110

classes and properties and constrain all the public methods in a given class. Preconditions111

represent the expectations of the contract, and postconditions represent its guarantees.112

Invariants represent the conditions that the contract maintains.113

Contrary to the Eiffel language, conceived by Bertrand Meyer in 1985, neither Java114

nor Kotlin provide a native and standardized approach for contract specification [10]. Still,115

developers can take advantage of language features and libraries to specify preconditions,116

postconditions, and class invariants in both languages. For example, they can use constructs117

provided by the programming language, such as the Java assert keyword introduced in Java118

1.4; they can use conditional runtime exceptions such as Java IllegalArgumentException;119

they can use annotations such as the AndroidX annotations @NonNull and @Nullable; and120

they can use specialized libraries such as Google Guava’s Preconditions API.4121

To facilitate the comparison with previous studies, we group these constructs into the122

five categories proposed by Dietrich et al. [13]: conditional runtime exceptions (CREs), APIs,123

annotations, assertions, and other. The main difference is that, since we focus on Android124

applications, we include contract elements that are specifically used by Android developers125

(e.g., Android annotations and specific Android runtime exceptions). To search for relevant126

contract elements, we used two main additional sources: the Android API Reference5 and127

the Kotlin Standard Lib API6. Table 1 summarizes the classification and provides some128

examples; we consider a total of 248 constructs. Below, we briefly describe each category.129

More details are included in the Supplementary Material [17].130

2.1 CREs131

An exception can be used to signal, at runtime, a contract violation. Bloch [6] suggests the132

use of runtime exceptions to indicate programming errors, as the great majority indicates133

precondition violations. However, it is important to note that the exception itself does not134

represent a contract; it needs to be associated with a previous check (e.g., an exception135

thrown inside an if-else block) to be considered so. Java and Kotlin offer many exceptions136

that can be used for this purpose, such as the IllegalArgumentException. The android.util137

package offers additional exceptions that we are also interested in analyzing, such as the case138

of the AndroidRuntimeException. Additionally, we are interested in a particular exception,139

the UnsupportedOperationException, which, according to the Java documentation, is thrown140

to indicate that the requested operation is not supported. As Dietrich et al. argue, this is141

the strongest possible precondition and can not be satisfied by any client [13].142

The following code shows an example of a precondition. An IllegalArgumentException143

is thrown when the contract shoppingCart.isEmpty() is violated. The method proceed-144

WithCheckout can only perform its task when the shoppingCart has at least one item.145

1 public void proceedWithCheckout (List <Item > shoppingCart) {146

2 if (shoppingCart . isEmpty ()) {147

3 throw new IllegalArgumentException ();148

4 }149

5 ...150

6 }151

4 https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/base/Preconditions.
html (last accessed on 01 April 2025)

5 https://developer.android.com/reference (last accessed on 01 April 2025)
6 https://kotlinlang.org/api/core/kotlin-stdlib (last accessed on 01 April 2025)

https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/base/Preconditions.html
https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/base/Preconditions.html
https://developer.android.com/reference
https://kotlinlang.org/api/core/kotlin-stdlib

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:5

We consider a total of 74 CREs (while Dietrich et al. [13] consider six). We show152

some examples in Table 1 but, due to lack of space, the full list is in the Supplementary153

Material [17].154

2.2 APIs155

APIs consist of wrappers around conditional exceptions and other basic constructs. This156

contributes to a simpler and explicit representation of contracts. We are interested in the157

four APIs listed in Table 1. For example, the Apache Commons offers the Validate7 class158

that, according to the official documentation, “assists in validating arguments”, suggesting159

a precondition usage. The methods provided by the Validate class are simply wrapping160

exceptions that we have already considered in the CREs. The same libraries do not offer161

any equal approach to specify postconditions, which suggests a preference from tool builders162

towards preconditions. Nevertheless, and against the guidelines, practitioners can still use163

any of those API’s methods to check postconditions.164

In the following example, that makes use of an API, a precondition items list is not empty165

is declared. In other words, the method addToShoppingCart guarantees that if the client166

fulfills its obligation to provide a non-empty list of items, it will be able to perform its job167

correctly.168

1 import org. apache . commons .lang3. Validate169

2170

3 fun addToShoppingCart (items: List <Item >): List <Item > {171

4 Validate . notEmpty (items)172

5 shoppingCart . addAll (items)173

6 return shoppingCart174

7 }175

2.3 Assertions176

Assertions were introduced in Java 1.4 and are specified through the assert reserved keyword.177

It helps practitioners verify conditions that must be true during runtime. JVM throws178

an AssertionError if the condition is false. However, JVM disables assertion validation by179

default, requiring it to be explicitly enabled. This means that practitioners may assume that180

contracts specified through assertions will be validated at runtime when in fact the assertions181

are disabled. This leads to an incorrect, and potentially dangerous, assumption. Having that182

in mind, assertions can still easily be used to check preconditions and postconditions.183

In the following example, the contract associated with the addToShoppingCart method184

defines two preconditions — the list of items to add to the shopping cart must have a size of185

greater than zero and smaller or equal to ten — and a postcondition — the items added to186

the shopping cart will be present in the shopping cart list.187

1 public List <Item > addToShoppingCart (List <Item > items){188

2 assert !items. isEmpty ();189

3 assert items.size () <= 10;190

4 shoppingCartItems . addAll (items);191

5 assert shoppingCartItems . containsAll (items);192

6 return shoppingCartItems ;193

7 }194

7 https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/
Validate.html (last accessed on 01 April 2025)

ECOOP 2025

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html

17:6 Contract Usage and Evolution in Android Mobile Applications

Kotlin also has its own assert. However, contrary to the Java version, assert in Kotlin195

is a function and not a reserved word. This means that any class can define a method196

with the name assert, which makes it harder for an automated analysis tool to distinguish197

between Kotlin’s assert or a developer’s custom method. Additionally, contrary to Java,198

Kotlin always executes the assert expression and only uses the -ea JVM flag to decide199

whether to throw the exception. Kotlin also offers other methods: check(), checkNotNull(),200

require(), and requireNotNull(). Although these throw an IllegalArgumentException or an201

IllegalStateException instead of an AssertionError, we added them to the assertions category202

because of their syntactic similarities.203

The following code uses Kotlin’s methods to specify the same pre and postconditions as204

in the previous Java example.205

1 fun addToShoppingCart (items: List <Item >): List <Item > {206

2 assert (items. isNotEmpty ())207

3 require (items.size <= 10)208

4 shoppingCartItems . addAll (items)209

5 check (shoppingCartItems . containsAll (items))210

6 return shoppingCartItems211

7 }212

2.4 Annotations213

Annotations are metadata added to the program providing information that can be used at214

compile time or runtime to perform further actions. Java provides many annotations through215

the java.lang package. Table 1 lists the annotation packages we are particularly interested in216

studying. No previous studies consider the android.annotation and the androidx.annotation.217

The annotation-based approach is particularly interesting for two reasons. First, many218

annotations can be associated with the method’s arguments (preconditions), the method’s219

return values (postconditions), or the class properties (invariants). Second, since annotations220

are usually added to the method’s signature or to the class property, there is a greater221

separation between the contract specification and the service’s implementation. This means222

that annotations, like in the Eiffel’s approach, do not increase the complexity of the method’s223

implementation, contrary to what happens with CREs, APIs, and assertion-based approaches.224

The code shown below uses annotations from the javax.validation.constraints.* packages225

to specify contracts. The method states that it can only return a list with a minimum size226

of 1 (postcondition), if the item identifier is not null and the quantity is greater or equal227

to one (preconditions). Also, the class property items is associated with a class invariant228

that states that the shopping cart can only contain ten items at maximum. This example229

shows that adding contracts through annotations does not require adding extra checks to230

the implementation, contributing to cleaner code.231

1 import javax. validation . constraints .*232

2 class ShoppingCart {233

3 @Size (max =10)234

4 private val items: List <Item > = mutableListOf ()235

5236

6 @Size (min =1) fun addItem (@NotNull itemUUID : String , @Min (1)237

quantity : Int): List <Item > {238

7 ...239

8 }240

9 }241

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:7

2.5 Other242

We consider Kotlin Contracts8, an experimental feature introduced in Kotlin 1.3 that allows243

developers to state a method’s behavior to the compiler explicitly. As the following example244

shows, they also provide useful information to the compiler: the call to split in line 4 causes245

no error, because the contract specified in line 10 guarantees that birthdate is not null.246

1 @ExperimentalContracts247

2 fun sendBirthdayMessage (birthdate : String ?) {248

3 birthdateIsValid (birthdate)249

4 val birthdaySplit = birthdate .split("/")250

5 ...251

6 }252

7253

8 @ExperimentalContracts254

9 fun birthdateIsValid (birthdate : String ?) {255

10 contract { returns () implies (birthdate != null)}256

11 if (birthdate == null) {257

12 throw IllegalArgumentException ()258

13 } ... }259

3 Related Work260

This section presents related work on the usage of contracts, assertions, and annotations by261

practitioners.262

3.1 DbC and Contract Usage263

It is widely supported that DbC contributes to improving software reliability [28, 39, 19].264

The advantages commonly mentioned are that DbC (i) improves code understanding [16,265

29, 39, 34], (ii) helps identify bugs earlier and diagnose failures [39, 4, 9, 13, 33], and (iii)266

contributes to better tests [39, 4, 33, 3, 36]. Some studies demonstrated that DbC requires267

fewer project person-to-hour resources [8, 36], but could not confirm an impact on quality.268

Moreover, DbC contributes to less time spent on writing tests [36]. Blom et al. [7] suggest269

that DbC results in fewer errors and decreases development time. In another study, Zhou270

et al. [42] show that DbC increased reliability in software components. In a study on C#271

projects using Code Contracts, Schiller et al. [33] found a high percentage of contracts272

related to null checking and suggest the importance of creating design patterns alongside273

tools and libraries. Estler et al. [15] analyzed 21 Eiffel, C#, and Java projects known274

to be equipped with contracts. Most contracts are null checks, with preconditions being275

typically larger than postconditions. The authors concluded that the average number of276

clauses per specification is stable over time and that the method’s implementation changes277

more frequently than its specification. However, they warned that strengthening contracts278

may be more frequent than weakening, indicating some unsafe evolution of contracts. Lastly,279

Dietrich et al. [13] investigated 176 popular Java projects in the Maven repository and found280

that the majority of programs do not use contracts significantly. They found that CREs are281

the most commonly used category, followed by asserts. The dominance of preconditions over282

postconditions in contracts is consistent with other studies [10, 33]. They found that projects283

that use contracts maintain or even expand their usage over time. Similarly to Estler et284

8 https://github.com/Kotlin/KEEP/blob/master/proposals/kotlin-contracts.md (last accessed on
01 April 2025)

ECOOP 2025

https://github.com/Kotlin/KEEP/blob/master/proposals/kotlin-contracts.md

17:8 Contract Usage and Evolution in Android Mobile Applications

al. [15], the authors reported some unsafe evolution of contracts, which can happen when a285

method strengthens its preconditions or weakens its postconditions. They also found many286

violations of the Liskov Substitution Principle (LSP), with prevalence in the annotations.287

The LSP states that objects of a superclass should be replaceable with objects of a subclass288

without altering the correctness of the program. According to this principle, a sub-type can289

only weaken preconditions or strengthen postconditions and class-invariants from its parent290

[1]. A sub-type should behave in a way that does not violate the expectations set by its291

super-type. This ensures that any code that works with the super-type can work with the292

sub-type without requiring modifications or encountering unexpected behavior. The authors293

caution that their dataset mainly includes libraries, which may explain the low usage of294

annotations. This study is the one most related to the work presented here, as it also studies295

contracts in Java. However, our study differs from Dietrich et al.’s [13] in that, not only we296

consider more constructs, we also focus on Android apps and we study both Java and Kotlin.297

3.2 Assertion Usage298

Kudrjavets et al. [22] studied two Microsoft Corporation components, written mainly in C299

and C++, and found that increased assert density led to a decrease in fault density, and that300

using asserts was more effective for fault detection than some static analysis tools. Kochhar301

and Lo [21] studied a dataset of 185 Apache Java projects available on GitHub and found that302

adding asserts contributes to fewer defects, especially when many developers are involved.303

This agrees with reports from Kudrjavets et al. [22] but it is not supported by Counsell et304

al. [12], who analyzed two industrial Java systems and found no evidence that asserts were305

related to the number of defects. Kochhar and Lo [21] also concluded that developers with306

more ownership and experience use asserts more often, which shows that more advanced307

programmers see it as a valuable practice. In line with other previously mentioned studies308

for contracts [33, 15], most uses are related to null-checking.309

3.3 Annotation Usage310

There is a general understanding that the use of annotations among practitioners is growing311

[40, 18]. Yu et al. [40] conducted a study on 1,094 GitHub open-source projects and found312

a median value of 1.707 annotations per project, with some developers overusing them.313

The authors argue the need for better training and tools to help derive better annotations.314

Other authors made a similar claim for contracts [33]. Additionally, developers with higher315

ownership use annotations more often, which agrees with the findings by Kochhar and Lo316

[21] related to assertion usage. Grazia and Pradel [18] investigated the evolution of type317

annotations, some of which can act as contracts, in 9,655 Python projects. The authors318

reported that although type annotations usage is increasing, less than 10% of potential319

elements are being annotated. This contradicts the (general) annotations overuse reported by320

Yu et al. [40]. More importantly, the study found that once added, 90.1% of type annotations321

are never updated. This indicates that specifications are more stable than implementations,322

which is desirable. A similar finding was reported by Estler et al. [15] related to the stability323

of contracts while the program evolves. Also relevant is that most type annotations were324

associated with parameter and return types, rather than with variable types. Finally, the325

authors found that adding type annotations increased the number of detected type errors.326

This motivates the general use of these features to improve software reliability.327

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:9

4 Study Design328

In this section, we present the design of our study, including the research questions, how the329

dataset of Android apps is created, the classification used for contracts, and the methodologies330

used to study contract usage and evolution.331

4.1 Research Questions332

In this study, we aim to answer the following research questions:333

RQ1. [Contract Usage] How and to what extent are contracts used in Android334

applications?335

RQ2. [First-To-Last Version Evolution] How does contract usage evolve in an336

application from the first to the last version?337

RQ3. [Safety] Are contracts used safely in the context of program evolution and338

inheritance?339

4.2 Dataset340

The dataset used is composed of real-world apps obtained from F-droid,9 an alternative app341

store listing over 4,000 free and open-source projects. The fact that it has a large number342

of open-source apps on a wide range of domains, makes F-Droid a good option. Moreover,343

F-Droid is normally used in research studies on Android apps [11, 41]. Apart from native344

Android apps written in Java or Kotlin, F-Droid’s catalog also contains projects that use345

hybrid frameworks (e.g., React Native) that we exclude from our dataset.346

We started by downloading the F-Droid index, which is a list of URLs for each project347

available in the catalog. Next, this list is filtered based on the following criteria: 1) The348

application source code is hosted in GitHub; 2) The application source code is either Java or349

Kotlin; 3) The GitHub project is not archived; 4) The GitHub project has had a commit350

since 2018. These inclusion criteria ensure that the project’s source code is easily accessible351

(through GitHub), is written mainly in Java or Kotlin (the languages we are interested in352

studying), while also guaranteeing that the project is active and relevant. We retrieve two353

versions for each of the filtered projects, which is a required step for the First-to-Last Version354

evolution study. We do this by storing a list of the URLs pointing to two GitHub versions:355

we first try to retrieve the oldest and the most recent release; if there are not enough releases,356

we try to retrieve the oldest and the most recent tag; finally, if there are not enough tags, we357

just keep the most recent commit of the repository. If there are no releases nor tags, we only358

consider one version (excluding it from the First-to-Last Version evolution study). Although359

our script resolved most of the versioning schemes found, some projects required manual360

handling to determine which version was the first and the last. Throughout the paper we361

refer to the most recent version as last or second version. Finally, we clone all the projects362

contained in the versions list. Every file that is neither a Java nor a Kotlin file is removed363

from the dataset, which helps to decrease its size.364

4.2.1 Dataset metrics365

From the initial list of 4,070 projects in the F-Droid index retrieved on May 21, 2023, we got366

3,215 hosted in GitHub, 3,141 non-duplicated URLs, and 2,390 projects after filtering by the367

9 https://f-droid.org (last accessed on 01 April 2025)

ECOOP 2025

https://f-droid.org

17:10 Contract Usage and Evolution in Android Mobile Applications

Table 2 Dataset metrics.

metric Java Kotlin Both
projects 1,767 623 2,390
compilation units 208,479 129,490 337,969
classes 305,749 265,410 571,159
methods (all) 2,113,620 632,416 2,746,036
constructors (all) 208,949 100,534 309,483
methods (public, protected, internal) 1,801,171 506,647 2,307,818
constructors (public, protected, internal) 187,789 99,221 287,010
KLOC including comments 40,635 12,341 52,977

inclusion criteria. Out of these, 1,767 are Java applications and 623 are Kotlin applications.368

For 1,802 applications we were able to retrieve two versions to be used in the first-to-last369

version evolution study. This means that for 588 applications it was only possible to retrieve370

one version (these are applications for which there are no GitHub releases nor tags). While371

these applications are still evaluated in the context of the usage and LSP studies, they are372

not considered for the first-to-last version evolution study.373

Table 2 presents additional metrics about the dataset size. As the table shows, the dataset374

is imbalanced, with more Java apps. The dataset includes 208,479 Java and 129,490 Kotlin375

compilation units and, therefore, Java represents 61.7% of the overall number of compilation376

units. This imbalance requires caution when trying to read this work’s results from the377

perspective of comparing Java against Kotlin’s use of contracts. Furthermore, the dataset378

includes 571,159 classes, 2,746,036 methods, and 309,483 constructors. We did not consider379

private methods, because those are not used directly by a client, and a contract is a bond380

between a supplier and a client. In total, we analyzed 2,594,828 public, protected, and internal381

methods and constructors.382

In terms of diversity, the dataset includes apps from various domains, such as gaming,383

communication, multimedia, security, health, and productivity.384

4.3 Data Collection and Analysis385

Here, we describe the analysis tool and the studies conducted to answer our research questions:386

the usage study, the first-to-last version evolution study, and the Liskov Substitution Principle387

study.388

4.3.1 Analysis Tool389

Our analysis tool is an extension of the tool created by Dietrich et al. [13], which was used390

in their study on the usage of contracts in Java apps. We extended the tool to support391

Kotlin and more constructs focused on Android apps. Additionally, the framework suffered392

considerable refactoring and organization to ease its comprehension and maintainability. The393

main effort was to add support for Kotlin. The original tool used the JavaParser10 library394

to perform AST analysis of Java code. Since this library is not able to parse Kotlin source395

code, we integrated JetBrains’s Kotlin compiler11 to perform this task. This required us396

to implement new versions of the tool’s extractors and visitors classes using the methods397

10 https://javaparser.org (last accessed on 01 April 2025)
11 https://github.com/JetBrains/kotlin (last accessed on 01 April 2025)

https://javaparser.org
https://github.com/JetBrains/kotlin

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:11

provided by the new library to be able to identify contract patterns in Kotlin. We also398

updated the JavaParser library to support newer Java versions.399

The tool is divided into three parts: 1) usage, which extracts the list of contracts present400

in each program and produces statistics about their use; 2) inheritance, which identifies401

contracts in overridden methods and validates whether they violate the Liskov Substitution402

Principle; and 3) first-to-last version evolution, which analyses how identified contracts evolve403

in later versions of the application. The following sections describe how each component404

contributes to answering our research questions.405

4.3.2 Usage Study406

The usage study is divided in two main steps: 1) identifying contract occurrences and 2)407

producing statistics about those results. Our tool uses the JavaParser and JetBrains’s Kotlin408

compiler libraries to perform AST analysis. This analysis is done against a set of extractors409

to identify occurrences of our defined constructs. Each category requires different approaches410

for their identification:411

CREs. During the AST analysis, we look for the pattern:412

if (<condition>) { throw new <exception> (<args>) }413

When this pattern is found, we check whether the exception belongs to the list of CREs414

considered (see Section 2). In line with Java’s good practices, we assume that CREs are415

used with preconditions.416

APIs. Firstly, we check whether the file contains an import declaration to any API417

package considered. If any is found, all call expressions in that file are analyzed to418

determine if they are invoking any of the methods provided by the API. As stated before,419

we assume the analyzed APIs to be associated with preconditions.420

Assertions. Identifying Java asserts is straightforward since the JavaParser provides a421

visitor method for this particular statement. The complexity lies in identifying Kotlin422

asserts, which is not a reserved keyword. To handle this challenge, when analyzing a423

file, we first search for any method declaration and any import statement that has a424

name equal to one of the following expressions: assert, require, requireNotNull, check, and425

checkNotNull. Next, we identify whether the class invokes any method with one of those426

names. Suppose a class contains a method declaration or import statement, as well as an427

invocation using the name of one of these expressions. In that case, we consider it an428

ambiguous situation, and therefore, we do not consider it an assert instance. If the class429

invokes one of those methods but does not declare/import any method with that same430

name, we consider it an assert. We do not classify assertions either as preconditions or431

postconditions.432

Annotations. We check if the source code file contains an import statement to one of the433

packages listed in Table 1. If that is the case, we check every annotation in that file to434

see if it matches any of those provided by the imported package. We also identify the435

artifact to which the annotation is associated as follows: 1) annotations associated with436

a method’s parameters are preconditions; 2) annotations associated with a method are437

postconditions; and 3) annotations associated with a field are class invariants.438

Others. This category only includes the investigation of the experimental Kotlin Contracts.439

To identify occurrences of this construct, we look for the pattern contract {returns440

(<condition>) implies (<condition>)}.441

ECOOP 2025

17:12 Contract Usage and Evolution in Android Mobile Applications

1 public static void setToolbarContentColorBasedOnToolbarColor (
2 @NonNull Context context ,
3 - Toolbar toolbar,

4 + @NonNull Toolbar toolbar,
5 @Nullable Menu menu ,
6 int toolbarColor ,
7 final @ColorInt int menuWidgetColor

Listing 1 Example of a precondition strengthened using the annotation
@NonNull, taken from the project Retro Music Player, a music player for Android
(in class ToolbarContentTintHelper).

Our tool creates a JSON file for program version that stores the identified contracts, including442

1) the file path, 2) the associated condition, 3) the method or property name, 4) the type of443

artifact (method or property), 5) the line number, and 6) the contract type. In the second step444

of the usage study, all the JSON files are analyzed to produce statistics about the identified445

contracts, including the frequency of each category (API, annotation, assertion, etc.), class446

(preconditions, postconditions, and class invariants), and construct (java assert, Guava API,447

androidx annotations, etc.). For each category, we also compute the Gini coefficient and the448

list of programs with more contracts.449

4.3.3 First-to-Last Version Evolution450

We focus on the initial and final GitHub versions of each project as these represent critical451

moments in the development: the initial introduction of the DbC constructs and the452

culmination of the development process. This allows us to check if there were any significant453

changes in the use of contracts.454

After identifying a contract in the first version of the app, we check whether, in the later455

version, the contract still exists, was modified, or removed. We also report cases when a456

contract is added to an artifact (method or parameter) in the later version of the app (but457

was not present in the first version). These provide insights into how contracts evolve in an458

app and whether this evolution poses risks to the client.459

As already mentioned, a contract establishes rights and obligations between clients and460

suppliers. Therefore, when a contract is altered, both parts should be informed and updated461

accordingly. This is particularly crucial when a precondition is strengthened or when a462

postcondition is weakened. In the first case, if the precondition is strengthened and the client463

does not know it, it can fail to cover its new obligations, and, therefore, the supplier is not464

bound to keep its part of the contract. In the latter case, if the postcondition is weakened,465

the client may still be making assumptions that the supplier does not ensure anymore. An466

example is shown in Listing 1, where the annotation @NonNull was added to the toolbar467

parameter in the last version. This is the case of a precondition strengthening: in the first468

version, the method accepted a null toolbar, but now it requires it to be not null. Therefore,469

if the client is not updated, it will fail to cover its new obligation.470

Similarly to Dietrich et al. [13], we create diff records from the contracts present in the two471

versions of a program’s method and then classify them according to the evolution patterns472

listed in Table 3.473

4.3.4 Liskov Substitution Principle Study474

When a method is overridden in a subclass, that class can specify new contracts added to the475

ones inherited from the superclass method. In this case, proper handling of contracts should476

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:13

Table 3 Classification of the diff records produced during the evolution and
LSP study.

Classification Description Risk
PreconditionsStrengthened A precondition was added to a method or a

clause to an existing precondition with the
‘&’ or ‘&&’ operators.

Potential
risk

PreconditionsWeakened A precondition was removed from a method,
or a clause was added to an existing
precondition with the ‘|’ or ‘||’ operators.

No risk.

PostconditionsStrengthened A postcondition was added to a method or a
clause to an existing postcondition with the
‘&’ or ‘&&’ operators.

No risk.

PostconditionsWeakened A postcondition was removed from a
method, or a clause was added to an existing
postcondition with the ‘|’ or ‘||’ operators.

Potential
risk.

MinorChange Contract elements are the same, but in
different order; or removal of a Nullable
postcondition, which is not considered as a
significant weakening [13].

No risk.

follow the Liskov Substitution Principle (LSP), which states that the subclass method must477

accept all input that is valid to the superclass method and meet all guarantees made by the478

superclass method. In other words, a subclass method can only weaken preconditions and479

strengthen postconditions.480

To detect those occurrences, we list all methods in each program-version pair associated481

with their respective class. We also identify the class’ parents. Then, similarly to the482

first-to-last version evolution study, diff records are created between the subclass and the483

superclass methods. These records are classified based on the evolution patterns outlined in484

Table 3, following the categories and descriptions proposed by Dietrich et al. [13].485

5 Results486

In this section, we present the results of our empirical study, as well as the main findings.487

As mentioned earlier, the dataset contains an imbalanced distribution of compilation units,488

with 61.7% written in Java and 38.3% in Kotlin. This imbalance should be considered when489

interpreting the findings, particularly in the context of comparing contract usage between490

Java and Kotlin.491

5.1 RQ1: Contract Usage492

Table 4 shows the number of contracts found per category, considering all versions (columns493

2 and 3) and considering only the latest version of each app (columns 4 and 5). The table494

also identifies the number of apps containing at least one contract for that category (columns495

6 and 7). The most obvious conclusion is that, in both languages, annotation-based contracts496

are the most popular category. More specifically, considering both languages in the last497

version, annotations represent 85.2% of the contracts found, followed by CRE with 11.1%,498

and then assertions with 2.9%. The results show similar tendencies between Java and Kotlin,499

and the only difference is that while Java’s second most popular category is CREs, in Kotlin,500

it is assertions. This relatively high percentage of the assertion category in Kotlin is explained501

ECOOP 2025

17:14 Contract Usage and Evolution in Android Mobile Applications

Table 4 Number of contracts found in the dataset by category.

contracts (all ver.) contracts (2nd ver.) applications
Category Java Kotlin Java Kotlin Java Kotlin

API 1,813 10 1,125 9 24 4
annotation 194,448 26,849 115,861 17,490 1,227 547
assertion 3,525 3,868 2,217 2,370 325 234

CRE 26,076 3,374 15,195 2,187 787 288
other - 1 - 1 - 1

Table 5 Gini coefficient by category.

Category Java Kotlin
assertion 0.70 0.71

API 0.80 0.37
annotation 0.87 0.76

CRE 0.77 0.67
others - 1.00

by our inclusion of the four language’s standard library methods listed in Section 2, where502

require() alone counts 901 total occurrences.503

Finding 1: Most contracts are annotation-based, accounting for 86.21% in Java and
79.29% in Kotlin of the total number of contracts found.

504

This distribution in categories’ popularity significantly differs from the findings of Dietrich505

et al. [13], who reported that the most common category was CREs and found surprisingly low506

use of annotations. This may be explained by the fact that, while our dataset is formed mostly507

by user-focused Android applications, Dietrich et al.’s dataset was mainly Java libraries. In508

Table 6, we can also see that most annotations found belong to the androidx.annotation.*509

package that the authors did not consider since it is Android-specific. Nevertheless, the510

high number of annotation-based contracts found is in line with literature that supports its511

increasing popularity [40, 18].512

From Table 4, we also verify that the usage of APIs is low in both languages, and it is513

even more residual in Kotlin applications, where only nine instances were found in the latest514

versions. Skepticism around adding third-party dependencies to projects, which may lead to515

maintainability and support issues in the future, may explain this finding [5, 38].516

Finding 2: The use of APIs to specify contracts is rare.
517

Table 6 shows the frequency of each construct. We highlight that the high number of518

annotations found is leveraged mostly by the androidx.annotation.* package. In APIs, the519

Guava library constitutes most of the usage. We were not expecting to see any usage of Spring520

Framework Asserts since this library was designed to be used in the Spring framework, but we521

still found one occurrence. At the same time, we found no occurrences of the now deprecated522

FindBugs annotations. Additionally, we identified a single occurrence of Kotlin Contracts,523

which may depict the practitioner’s distrust of using a feature still in an experimental phase.524

We now consider Table 5, which presents each category’s computed Gini coefficient. The525

Gini coefficient measures the inequality among the values of a frequency distribution. In526

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:15

Table 6 Number of contracts found in the dataset by construct and category.

contracts (all ver.) contracts (2nd ver.)
Construct Category Java Kotlin Java Kotlin

cond. runtime exc. CRE 25,565 3,232 14,887 2,071
unsupp. op. exc. CRE 511 142 308 116

java assert assertion 3,525 - 2,217 -
kotlin assert assertion - 3,868 - 2,370

guava precond. API 1,798 10 1,121 9
commons validate API 14 0 3 0

spring assert API 1 0 1 0
JSR303, JSR349 annotation 0 0 0 0

JSR305 annotation 4,195 20 2,133 13
findbugs annotation 0 0 0 0
jetbrains annotation 2,310 138 1,596 98
android annotation 12,003 5,704 7,013 3,414
androidx annotation 175,940 20,987 105,119 13,965

kotlin contracts others - 1 - 1

other words, a Gini coefficient of 0 indicates perfect equality, where all apps have the same527

number of contracts. In contrast, a Gini coefficient of 1 means that a single program has528

all the contracts. We observe that all coefficients in the table are high, except for Kotlin’s529

API usage. This means that although some apps use contracts intensively, the majority530

does not use them significantly. This aligns with the results found by Dietrich et al. [13].531

This conclusion can also be seen in Table 7, where the five projects that use more contracts532

per category are listed. The table shows the number of contract elements used and the533

application’s category. We find that a small group of projects own a large percentage of the534

overall use in each category. It is clearly visible from the assertion and CRE categories that535

the numbers quickly decrease through the first to the fifth application showing the unbalanced536

usage between applications. F-Droid does not provide statistics, such as downloads, but the537

categories shown provide an indication of their purpose (with over half of these applications538

belonging to the category Internet).539

Finding 3: Although there are some applications that use contracts intensively, the
majority do not use them significantly.

540

Lastly, Table 8 presents the frequency of each contract type. Once again, we have distinct541

results for Java and Kotlin. In Java, we found 64.80% of the classified instances in the542

last versions to be preconditions, 22.87% postconditions, and only 12.32% class invariants.543

These results align with other studies on contracts [10, 33, 13] that show a clear preference544

towards preconditions. However, results for Kotlin are different: considering last versions, we545

found 38.81% to be postconditions, 31.64% class invariants, and 29.55% preconditions. This546

suggests that Kotlin developers tend to favor postconditions, while preconditions come at547

the last position. According to the classification described in Section 4.3.2, only annotations548

are classified as postconditions or class invariants. This means that in Kotlin, there is a549

higher number of annotations associated with methods’ return values and class properties550

than with the methods’ parameters.551

ECOOP 2025

17:16 Contract Usage and Evolution in Android Mobile Applications

Table 7 Top five applications using contracts (second versions only) by cat-
egory.

Category Applications
assertion K1rakishou-Kuroba-Experimental (378; Internet), a-pavlov-jed2k (314; Internet),

abhijitvalluri-fitnotifications (143; Connectivity), thundernest-k-9 (114; Internet),
mozilla-mobile-firefox-android-klar (95; Internet)

CRE redfish64-TinyTravelTracker (1,036; Navigation), nikita36078-J2ME-Loader (690;
Games), abhijitvalluri-fitnotifications (561; Connectivity), lz233-unvcode-android
(561; Writing), cmeng-git-atalk-android (447; Internet)

API wbaumann-SmartReceiptsLibrary (534; Money), alexcustos-linkasanote (318; In-
ternet), BrandroidTools-OpenExplorer (69; System), snikket-im-snikket-android
(60; Internet), oshepherd-Impeller (33; Internet)

annotation MuntashirAkon-AppManager (5,957; System), Forkgram-TelegramAndroid
(5,552; Internet), Telegram-FOSS-Team-Telegram-FOSS (5,549; Internet),
MarcusWolschon-osmeditor4android (4,393; Navigation), NekoX-Dev-NekoX
(4,032; Internet)

other zhanghai-MaterialFiles (1; System)

Table 8 Number of contracts found in the dataset by type.

contracts (all ver.) contracts (2nd ver.) applications
Type Java Kotlin Java Kotlin Java Kotlin

precond. 145,961 9,323 85,627 5,810 1,132 355
postcond. 49,694 11,669 30,224 7,632 925 438
invariants 26,623 9,217 16,280 6,221 677 359

unclassified 3,584 3,893 2,267 2,394 279 202

Finding 4: Java and Kotlin practitioners display different tendencies when it comes
to the contract type. In Java, there is a preference towards preconditions, while in
Kotlin, postconditions are the most frequent type.

552

Although we can not provide a reason for this finding with certainty, analysing the most553

frequent constructs for pre and postconditions in both languages can give us some hints.554

Tables 9 and 10 show the top 10 most frequent constructs per type in the last versions555

of Java and Kotlin apps, respectively. Comparing the two tables reveals distinct behavior556

patterns: for Kotlin, none of the top ten constructs relates to null-checking; however, for557

Java’s instances reported in Table 9, 84.48% of preconditions and 73.05% of postconditions558

are associated with null-checking. In this number, we are not considering potential Illeg-559

alArgumentException and IllegalStateException that could be associated with null-checking560

since this would require analyzing the condition in the if-statement. This suggests a lack of561

expressiveness in the contracts specified by Java practitioners, with most being associated562

with null-checking, consistent with prior studies [33, 15].563

This contrast in null-checking contracts between Java and Kotlin is easily explained564

by the languages’ different takes on nullability. In Kotlin, regular types are non-nullable565

by default; therefore, in most cases, practitioners do not have the need for constructs like566

AndroidXNonNull or JSR305NonNull. On the other hand, it is interesting to observe that567

relaxing this constraint to allow nullable types is not a common practice since we found no568

meaningful use of constraints like AndroidXNullable and similar in Kotlin.569

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:17

Table 9 The top 10 most frequent constructs per type in the last versions of
Java applications.

Preconditions Postconditions
AndroidXNonNull (45,399) AndroidXNonNull (12,943)
AndroidXNullable (18,236) AndroidXNullable (6,945)

IllegalArgumentException (7,663) AndroidSuppressLint (3,125)
IllegalStateException (3,232) AndroidTargetApi (1,243)
NullPointerException (2,230) AndroidXRequiresApi (760)

GuavaPreconditionNotNull (1,021) AndroidXWorkerThread (568)
AndroidXStringRes (1,008) AndroidXCheckResult (474)

JSR305NonNull (860) AndroidXCallSuper (421)
IndexOutOfBoundsException (656) AndroidXKeep (398)

JetBrainsNotNull (612) AndroidXUiThread (347)

Table 10 The top 10 most frequent constructs per type in the last versions of
Kotlin applications.

Preconditions Postconditions
AndroidXStringRes (1,162) AndroidSuppressLint (2,289)
IllegalStateException (772) AndroidXVisibleForTesting (1,663)

IllegalArgumentException (748) AndroidXRequiresApi (738)
AndroidXColorInt (532) AndroidXWorkerThread (638)

AndroidXDrawableRes (435) AndroidXMainThread (442)
AndroidXAttrRes (255) AndroidXCallSuper (323)
AndroidXColorRes (199) AndroidXColorInt (244)

AndroidXIdRes (187) AndroidTargetApi (205)
ProviderMismatchException (177) AndroidXUiThread (196)

UnsupportedOperationException (116) AndroidXAnyThread (184)

Finding 5: In Java applications, at least 80.85% of preconditions, 63.84% of post-
conditions, and 62.73% of class invariants are related to null-checking. In the case
of Kotlin, we found only about 3.18% of preconditions, 7.17% of postconditions, and
0.66% of class invariants to be performing null-checking.

570

5.2 RQ2: First-to-Last Version Evolution571

Table 11 presents the number of contracts in both versions by category. The Type column572

presents all types that are supported. In general, for most cases, the number of contracts573

in each category increased from the first to the last version. The only category where the574

number decreased was the Apache’s Commons Validate for Java.575

We computed some metrics to understand how the increase in the program’s size relates576

to the number of contracts (see Table 12). These include the average and median values577

for the number of methods, the number of contracts, and the ratio between both (for both578

versions). The table shows that there is an average increase of about 114.185 methods579

per program. This is expected since the program’s size tends to increase from the first to580

the second version. However, a more interesting insight comes from the contracts count.581

Although the average number of contracts per program increased, its median value decreased.582

This means that the dataset includes outliers with a significant rise in contract usage that583

considerably affected the average value. To confirm this data, we computed the ratio between584

ECOOP 2025

17:18 Contract Usage and Evolution in Android Mobile Applications

Table 11 Contract elements by type in both versions.

contracts (1st vers.) contracts (2nd vers.)
Type category Java Kotlin Java Kotlin

cond. runtime exc. CRE 10,678 1,161 14,887 2,071
unsupp. op. exc. CRE 203 26 308 116

java assert assertion 1,308 - 2,217 -
kotlin assert assertion - 1,498 - 2,370

guava precond. API 677 1 1,121 9
commons validate API 11 0 3 0

spring assert API 0 0 1 0
JSR303, JSR349 annotation 0 0 0 0

JSR305 annotation 2,062 7 2,133 13
findbugs annotation 0 0 0 0
jetbrains annotation 714 40 1,596 98
android annotation 4,990 2,290 7,013 3,414
androidx annotation 70,821 7,022 105,119 13,965

kotlin contracts others - 0 - 1

Table 12 Average and median number of methods, contracts, and their ratio
for the two versions.

1st version 2nd version
Metric Median Average Median Average

methods count 288 925.175 334 1039.360
contracts count 8 72.567 7 86.807

contract-to-method ratio 0.038 0.072 0.030 0.064

the number of contracts and the number of methods for each version of a program. Then,585

we computed the difference between the second and the first version’s ratio for each program.586

The average of these differences is -0.0077, and the median is -0.0012. Although the values587

are very small, we conclude that the number of methods increases significantly more than588

the number of contracts.589

Finding 6: Apps that use contracts continue to use them in later versions. Moreover,
the total and average numbers of contracts increase, but its median decreases by a
small factor. Also, the number of methods increases at a higher rate than the number
of contracts.

590

Similarly to our study, Dietrich et al. [13] also found that the median value of the ratio591

does not change much. Still, while we observed a decline between the two versions (from592

0.038 to 0.030), they reported an increase (from 0.021 to 0.023). This means that although593

both studies show general stability related to contracts usage, contrary to their study, we594

were not able to find a positive correlation between the increase in the number of methods595

and in the number of contracts.596

5.3 RQ3: Safety597

To address whether practitioners tend to misuse contracts in either program evolution or598

inheritance contexts, we build diff records to be classified according to evolution patterns.599

Some of these evolution patterns are associated with a potential risk that may lead to client600

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:19

1 - @NotNull
2 public Intent getIntent () { return intent ; }

Listing 2 Example of a postcondition weakened using a Jetbrains annotation,
taken from the project mGerrit, a Gerrit client for Android (in class
SyncProcessor).

breaks, namely when preconditions are strengthened or postconditions are weakened. This601

process was described in more detail in Sections 4.3.3 and 4.3.4. It is important to note that602

the analysis tool cannot precisely capture all contract changes due to the variety of constructs603

we are analyzing and the complexity of their semantics. This can potentially lead to under-604

reporting. Another factor that may contribute to under-reporting is file path changes between605

versions, which may lead to no evolution patterns being detected. Even so, Table 13 still606

provides valuable insights into the safety of contract usage and evolution. The table shows607

the frequency of each evolution pattern in the context of program evolution (third column).608

We see that many contracts remain unchanged and that most changes are not critical.609

However, most of the changes that occur can lead to potential breaks, with precondition610

strengthening being over three and a half times more prevalent than postcondition weakening.611

An example of a precondition strengthening using an annotation and taken from our dataset612

was already shown in Listing 1. The code is from the class ToolbarContentTintHelper in613

project Retro Music Player,12 a music player for Android. Adding @NonNull to the toolbar614

parameter strengthens the precondition by explicitly requiring callers to pass a non-null615

Toolbar instance, potentially breaking clients that previously relied on more permissive616

behavior. Listing 2 shows an example of a postcondition weakening. The code is taken from617

class SyncProcessor in project mGerrit,13 a Gerrit client for Android. The postcondition is618

weakened because the @NotNull annotation promises a non-null Intent, but if intent is ever619

null, this contract is violated — potentially leading to runtime errors like NullPointerException620

in callers that rely on the non-null guarantee.621

Finding 7: There are instances of unsafe contract changes while the program evolves,
particularly cases of preconditions strengthening.

622

Finally, Table 13 also presents the results found for evolution patterns in the context623

of inheritance (fourth column). We observe that the precondition strengthening pattern624

makes up almost 50% of classified instances. We also note that from the classified instances,625

most parts are related to contract changes which means a lack of stability in specifications.626

Both in the evolution and the inheritance study, we found lower occurrences of postcondition627

weakening when compared to the other classifications. Also, compared to the reports from628

Dietrich et al.’s study [13], our results indicate a greater ratio of precondition strengthening629

per preconditions found.630

Finding 8: There are instances of unsafe contract changes in an overriding context
that violate the Liskov Substitution Principle, particularly cases of preconditions
strengthening.

631

12 https://github.com/RetroMusicPlayer/RetroMusicPlayer (last accessed on 01 April 2025)
13 https://github.com/JBirdVegas/external_jbirdvegas_mGerrit (last accessed on 01 April 2025)

ECOOP 2025

https://github.com/RetroMusicPlayer/RetroMusicPlayer
https://github.com/JBirdVegas/external_jbirdvegas_mGerrit

17:20 Contract Usage and Evolution in Android Mobile Applications

Table 13 Contract evolution in the context of program evolution and inherit-
ance.

Contract Evolution Critical Evolution (#) Inheritance (#)

unchanged no 28,723 207
minor change no 61 5

preconditions weakened no 688 5
postconditions strengthened no 1,035 76
preconditions strengthened yes 1,963 284
postconditions weakened yes 552 1

unclassified ? 858 159

6 Discussion632

In this section, we answer the research questions listed in Section 4.1, we discuss the practical633

implications of our findings, and we outline threats to the validity of our work.634

6.1 Answers to Research Questions635

Based on our findings, we answer the research questions posed in Section 4.1 as follows:636

RQ1 [Contract Usage] How and to what extent are contracts used in Android applications?637

Contracts are concentrated in a small number of apps. When applications use contracts,638

annotation-based approaches are the most frequent, with the androidx.annotation package639

being the most popular. The use of APIs to specify contracts is rare. While in Java, 64.80% of640

the classified instances are preconditions, Kotlin programs display a more equally distributed641

selection with 22.87% postconditions at the top. We also found that more than 60% of642

the classified contracts in Java are related to null-checking, while in Kotlin that number is643

smaller than 8%.644

RQ2 [First-to-Last Version Evolution] How does contract usage evolve in an application645

from the first to the last version? Applications that use contracts continue to use them646

in later versions. When comparing the number of contracts in both versions, the average647

number of contracts increases. This is caused by some outliers that increase its usage648

substantially, driving up the average. In fact, the median value decreases. Furthermore, the649

contract-to-method ratio decreases between versions — an average decrease of -0.0077 and a650

median decrease of -0.0012. Although by a residual factor, we observed that the number of651

contracts declines as programs grow.652

RQ3 [Safety] Are contracts used safely in the context of program evolution and inherit-653

ance? Contract changes are frequent and can lead to potential breaks, with preconditions654

strengthening being the most classified pattern. These results show a potentially unsafe use655

of contracts that may lead to client breaks and violate the Liskov Substitution Principle.656

6.2 Practical Implications & Recommendations657

Our findings lead to the following practical implications and recommendations.658

Recommendation 1: Due to the fragmentation of technologies and approaches to specifying659

contracts, both Java and Kotlin standard libraries should be equipped with constructs to660

specify contracts and with proper official documentation.661

Recommendation 2: It would be desirable to have libraries that standardize contract662

specifications in Java and Kotlin. Our results suggest that these libraries should be built663

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:21

around annotation-based contracts, given its popularity among practitioners. An annotation-664

based approach, where specifications are added to the program as metadata, is similar to665

Eiffel’s approach, where the assertions do not obfuscate the method’s implementation. This666

recommendation also applies to tool builders: given that the current use of APIs in Android667

development appears to be relatively low, analysis tools for Android that leverage contracts668

should prioritize annotations.669

Recommendation 3: New tools to aid practitioners writing contracts would be valuable.670

For example, the integration into IDEs of contract suggestion features supported by tools for671

invariant inference, such as Daikon [14], could help increase practitioners’ use of contracts.672

Another contribution could be IDE and continuous integration plugins to detect contract673

violations in the context of program evolution and inheritance.674

Recommendation 4: Our findings show that Kotlin’s default non-nullable types reduce the675

need to explicitly write some contracts, highlighting the significance of language design features676

that enable safety by default. These findings are relevant for the design of programming677

languages and can serve as motivation for practitioners when selecting programming languages678

for new projects.679

6.3 User Study680

To evaluate the recommendations we derived from our findings, and to gather challenges681

faced by practitioners when using contracts, we conducted a qualitative survey study with 16682

practitioners. In particular, we are interested in answering the following research questions683

(SRQs):684

SRQ1. [Challenges] What are the main challenges that users face when using contracts?685

SRQ2. [Recommendations] What do users recommend to increase contracts’ adoption?686

6.3.1 Methodology687

To answer our RQs, we designed a qualitative survey study.688

6.3.1.1 Recruitment.689

To improve the external validity, we allowed the participation of all kinds of software690

developers, but we recorded their experience with Android development. We recruited691

participants through Discord, LinkedIn, and our network (e.g., past students and colleagues).692

We also used snowball sampling by asking our contacts to distribute the study to their693

professional network. Our survey was implemented on Qualtrics and shared online. To694

prevent bots, all participants had to complete a reCAPTCHA challenge14. Per our inclusion695

criteria, participants were required to be at least 18 years old, in the United States, fluent in696

English, and possess some programming experience to ensure familiarity with basic software697

development concepts. All participants that we were able to recruit and who met the698

eligibility criteria were included in the final sample. Before deploying the study, we piloted it699

with five participants, iterating the survey between participants.700

14 reCAPTCHA is a security service provided by Google that protects websites from fraud and abuse by
distinguishing human users from automated software.

ECOOP 2025

17:22 Contract Usage and Evolution in Android Mobile Applications

6.3.1.2 Survey Description.701

We begin our survey by showing participants the consent form. If they agree, we show the702

first section of our study, where we ask participants about their programming background703

and years of programming experience. Then, to ensure all participants are aware of the704

concept of DbC, we provide a short description and an example (see Figure 1). Participants705

are then asked about their confidence in understanding the definition of a contract, followed706

by questions regarding their frequency of contract use.707

Figure 1 Explanation shown to participants about DbC.

Here, the survey is split into two parts. For those who never use contracts, a follow-up708

section asks for the reasons for not using contracts. Participants who use contracts are asked709

to describe their reasons for using contracts and any challenges they have encountered. This710

is followed by the recommendations section. It begins by asking participants to suggest ways711

to improve the adoption of contracts. Following this, participants are presented with the712

following recommendations to improve contracts, obtained from the findings of our empirical713

study:714

Extend Java and Kotlin standard libraries with specialized constructs to specify contracts715

and with proper official documentation.716

Have libraries that standardize contract specifications in Java and Kotlin.717

Integrate into IDEs contract suggestion features supported by tools that automatically718

generate assertions and contracts.719

IDE and continuous integration plugins to automatically detect contract violations.720

Participants were asked to rank these recommendations in terms of importance. Finally, the721

survey concludes with a demographic section.722

The recommendations presented to participants in the user study were derived from723

our empirical findings but reformulated in a more concise and direct way. Presenting the724

recommendations exactly as shown in Section 6.2, which includes both context and the725

recommendation itself, was deemed too verbose for the user study.726

6.3.1.3 Ethical Considerations.727

The study was approved by the IRB of Carnegie Mellon University. The participants did not728

receive payment upon survey completion. All participants were shown a consent form before729

filling in the survey. We did not collect any personally identifiable data.730

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:23

6.3.1.4 Demographics.731

We recruited two participants for the initial pilot and three more for the follow-up pilot.732

For the finished survey, we recruited 23 participants. Of those 23, seven were ineligible or733

did not pass our screening questions (e.g., by not having programming experience). The734

remaining 16 participants sample is composed of individuals aged between 18 and 44 years,735

with most (nine participants) in the 25-34 age bracket. Gender representation includes736

male, female, non-binary/third gender, and one participant preferring not to disclose their737

gender. Educational backgrounds are high, with most participants holding graduate or738

professional degrees and a smaller portion possessing bachelor’s degrees. The sample is739

primarily White or Caucasian, with one Asian participant and one preferring not to disclose740

their race. Programming experience among the participants is diverse, with Python being the741

most commonly used language, followed by Java, JavaScript, C++, Rust, TypeScript, Go, C,742

Kotlin, and Dafny. All participants had some programming experience, with five participants743

having 1-3 years, three with 4-6 years, another five with 7-10 years, and finally, two with744

over 10 years of experience. Only one had less than one year of experience. Regarding745

experience with Android development, about half of the participants, 9 out of 16, had no746

years of experience. A subset had some experience, with one participant having between747

1-3 years and another 7-10 years. The remaining five participants had less than one year of748

experience with Android software development.749

6.3.1.5 Analysis750

We used descriptive statistics to analyze the survey data from the closed-answer questions.751

For the qualitative responses, we developed three distinct codebooks tailored to different752

aspects of the dataset: 1) the reasons behind participants’ use or non-use of contracts, 2)753

the challenges encountered while using contracts, and 3) the recommendations offered by754

participants to enhance the adoption of contracts. We used emergent coding techniques to755

develop the codebooks. We followed an iterative process to code the qualitative data. One of756

the researchers began by creating the first versions of the three codebooks. After this, two757

researchers independently double-coded all the answers, refined the codebook, recoded the758

answers again, and finally met to discuss any disagreements and reach a consensus.759

6.3.2 Results760

Among our survey participants, all, except one, reported using contracts in their programming761

practices, citing various reasons that underscore the multifaceted benefits of this approach.762

The participant who said they did not use contracts attributed their decision to the informal763

nature of their programming work, mainly prototyping and scripting. A significant majority,764

11, highlighted the role of contracts in enhancing code quality and reliability. They mention765

that they use contracts to assert postconditions, verify preconditions, detect bugs, and766

identify edge-case bugs. This ensures that the code behaves as expected across compile-767

time and runtime scenarios. Four participants mentioned the importance of contracts as a768

documentation tool for improving code clarity. Three responses said that they used contracts769

in software design to manage expectations for software behavior. Lastly, two participants770

pointed out the operational benefits of contracts in enhancing the development process. They771

mentioned how contracts facilitate “sanity checks” (Participant 10) and ensure compliance772

with requirements.773

ECOOP 2025

17:24 Contract Usage and Evolution in Android Mobile Applications

Table 14 Codebook for participants’ challenges when using contracts.

Code Description

3 Maintenance
and Flexibility

Problem with maintenance of contracts when implementations
change, and the perceived lack of flexibility with contracts.

2 Specification
and Expressiveness

Challenges in defining specifications and on the balance between
contract expressiveness and automatic verification capabilities.

2 Cognitive Overload
and Integration

Increased cognitive load due to managing both code and con-
tracts, and integrating contracts into existing codebases.

2 Loop Invariants
and Abstraction Levels

Specific challenges in formulating loop invariants and choosing
the appropriate level of abstraction.

2 Enforcement
Challenges

Challenges related to effectively enforcing contracts within the
development process.

1 Security Concerns Potential security risks.
1 Learning Curve

and Documentation
Initial learning curve, difficulty in understanding contract librar-
ies and navigating the documentation.

6.3.2.1 SRQ1: Challenges774

This subsection addresses SRQ1 and explores users’ main challenges when using contracts in775

software development.776

Participants provided diverse answers when questioned about their challenges when using777

contracts. In Table 14, we describe the codes and their respective frequency in participants’778

answers. The most cited obstacle was Maintenance and Flexibility, mentioned by three parti-779

cipants. This code highlights the sometimes complicated tasks of maintaining and updating780

contracts in complex projects. Participant 12 mentioned, “if the implementation changes,781

we need to update the contract, and so, it can become complex to know which contracts782

need to be updated”. Challenges like Specification and Expressiveness, Cognitive Overload,783

Loop Invariants, and Enforcement were each present in the answers of two participants. And,784

finally, Security Risks and Learning Curve and Documentation were mentioned as challenges785

by one participant each.786

6.3.2.2 SRQ2: Recommendations787

This subsection addresses SRQ2 and users’ recommendations to improve the adoption and788

usage of contracts in software development.789

As mentioned before, we showed participants four recommendations obtained from our790

empirical study. Overall, participants seem to value all recommendations previously identified,791

as most classify them as “Very Important” and “Somewhat Important”. The recommendation792

that participants seem to value the most is “IDE and continuous integration plugins to793

automatically detect contract violations” with 14 saying it is “Very Important” for them794

and two “Somewhat Important”. This recommendation is closely followed by the one that795

suggests integrating contracts into IDEs (“Integrate into IDEs contract suggestion features796

supported by tools that automatically generate assertions and contracts”) with 11 saying it is797

“Very Important” for them, and five “Somewhat Important.” The remaining suggestions are798

to extend standard libraries with specialized constructs to specify contracts and with proper799

official documentation; these were also valued by participants, but one participant showed800

some uncertainty and indicated they were “Not sure” and classified it as “Not Important801

at All”. Our results suggest that participants view the recommendations identified in our802

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:25

Table 15 Codebook for participants’ suggestions, including the frequency and
description of each code.

Code Description

7 Tool Support
and Integration

Developing tools and IDE integrations that assist in creating,
verifying, and managing contracts.

3 Educational Resources
and Training

Providing more educational materials, examples, and training
on DbC principles and benefits.

3 Error Handling and
Debugging Support

Ensuring error recovery mechanisms and developing tools to
simplify debugging processes related to contract violations.

2 Standards and
Guidelines

Establishing standards or guidelines for how contracts should be
defined, including preconditions and postconditions.

2 Incremental Adoption
Strategies

Encouraging incremental adoption of DbC to make it easier for
developers to integrate into their workflows.

2 User Interface
and Templates

Providing user interfaces and templates to facilitate the writing
of contracts and automatic code generation/repair.

2 NLP and AI Utilizing NLP and AI for contract code suggestions.
2 Specification

/ Code Repair
Providing the ability to repair code based on changes to specifica-
tions (contracts) or update specifications based on code changes.

1 Programming
Language Support

Enhancing programming language features to support contracts
more effectively.

1 Automatic Verification
and Testing

Improving automatic verification of contracts with less human
effort and generating tests from contracts.

1 Real-Time Feedback
and Metrics

Integrating real-time feedback and metrics within IDEs to provide
indicators of code quality and contract coverage..

empirical work as valuable and support our insights.803

Before asking participants to rank the previously identified recommendations, we asked804

them to suggest ways to improve the adoption of DbC. The codebook with the frequency of805

each code can be seen in Table 15. Participants’ answers were diverse and seemed to also806

validate our results. The most frequent code in participants’ suggestions is Tool Support and807

Integration: in total, seven participants suggested developing tools and IDE integrations that808

assist in creating, verifying, and managing contracts. This code validates our findings as it809

is similar to the recommendations that we derived from our empirical study. The second810

most frequent codes were the ones related to providing educational materials, templates,811

user-friendly interfaces, and robust error handling for users. The codes Educational Resources812

and Training, Error Handling and Debugging Support, and User Interface and Templates813

were each found three times in participants’ answers. These recommendations suggest that814

participants need resources that support them in the practical implementation of contracts.815

Participant 9 directly says that they think that a way to improve the adoption of contracts816

is to “always make sure there is a way to recover from the exceptions thrown whenever817

the assert (Python) statement is used.” Standards and Guidelines, Incremental Adoption818

Strategies, Natural Language Processing and AI, and Specification / Code Repair were each819

mentioned twice. Particularly, Natural Language Processing and AI in similar ways by two820

participants, with Participant 7 saying “I think AI contract code suggestions would reduce821

the barrier to entry and cost of writing the code.” Finally, Programming Language Support,822

Automatic Verification and Testing, and Real-Time Feedback and Metrics were mentioned823

once, reinforcing that participants desire more automatic implementations of contracts and824

more feedback from their application.825

ECOOP 2025

17:26 Contract Usage and Evolution in Android Mobile Applications

Overall, our results suggest a clear direction — developers seem to desire improved tool826

support and integration of DbC in the development process. Our results highlight the need827

for future work on contracts and validate the findings of our empirical study.828

6.4 Threats to Validity829

Internal Validity. The accuracy of our results depends on the quality and correctness830

of the artifact, and there may exist bugs in the code. To mitigate this, we extensively831

tested the tool. In addition, all code and datasets used are publicly available for other832

researchers and potential users to check the validity of the results. Regarding the user833

study, one potential threat is the Hawthorne effect, where participants may alter their834

behaviour because they are aware they are being observed. To mitigate this risk, we ensured835

that participation was confidential and that responses could not be linked to individuals.836

External Validity. The projects that we selected might not be an accurate representation of837

other, more popular, Android app stores. We mitigated this by using F-Droid, a collection of838

open-source applications commonly used in other research studies. We also mitigated this risk839

by analysing all the projects that satisfy the inclusion criteria, leading to a substantial dataset840

(51 MLoC) with applications of different types. Regarding the user study, one potential841

threat arises from the fact that about half of the participants lacked prior experience with842

Android development. As a result, the findings may not fully generalize. Conclusion843

Validity. We might have missed language constructs that could be used to specify contracts.844

To mitigate this, we followed an established taxonomy [13] that we adapted and extended845

by systematically searching forums and the official Android documentation. The full list846

of constructs is available in the Supplementary Material [17]. Also, all our code is easily847

open to extension. Another risk comes from our dataset being imbalanced (with more Java848

than Kotlin applications). We mitigate this by explicitly discussing this imbalance when849

presenting results that might be affected by it.850

7 Conclusions851

Empirical evidence about contract usage can help the software engineering community852

create or improve existing libraries and tools to increase DbC adoption. This also helps to853

understand DbC’s current practices better, helping practitioners discover and decide between854

different approaches. Researchers can also use our contributions to conduct additional studies.855

Future work includes large-scale studies with practitioners to understand the challenges856

faced when specifying contracts, the use of annotations to improve Android analysis tools857

[24, 32, 30, 31], and the development of tools that can help increase the adoption of DbC858

[20, 43, 2].859

References860

1 Y. A.Feldman, O. Barzilay, and S. Tyszberowicz. Jose: aspects for design by contract. In861

Fourth IEEE International Conference on Software Engineering and Formal Methods, Los862

Alamitos, CA, USA, 2006.863

2 Shibbir Ahmed, Sayem Mohammad Imtiaz, Samantha Syeda Khairunnesa, Breno Dantas Cruz,864

and Hridesh Rajan. Design by contract for deep learning apis. In Proceedings of the 31st865

ACM Joint European Software Engineering Conference and Symposium on the Foundations of866

Software Engineering, pages 94–106, 2023.867

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:27

3 A. Algarni and K. Magel. Toward design-by-contract based generative tool for object-oriented868

system. In 2018 IEEE 9th International Conference on Software Engineering and Service869

Science (ICSESS). Proceedings, pages 168 – 73, Piscataway, NJ, USA, 2018.870

4 M. Aniche. Effective Software Testing. A Developer’s Guide. Manning, Shelter Islands, 2022.871

5 M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection in android and its872

security applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer873

and Communications Security, CCS ’16, page 356–367. Association for Computing Machinery,874

2016.875

6 Joshua Bloch. Effective java. Addison-Wesley Professional, 2nd edition, 2008.876

7 M. Blom, E. J. Nordby, and A. Brunstrom. On the relation between design contracts and877

errors: a software development strategy. In Proceedings Ninth Annual IEEE International878

Conference and Workshop on the Engineering of Computer-Based Systems, pages 110–117,879

2002.880

8 M. Blom, E.J. Nordby, and A. Brunstrom. An experimental evaluation of programming by881

contract. In Proceedings Ninth Annual IEEE International Conference and Workshop on the882

Engineering of Computer-Based Systems, pages 118–127, 2002.883

9 C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. Assert use in github projects.884

In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE).885

Proceedings, volume 1, pages 755 – 66, Los Alamitos, CA, USA, 2015.886

10 P. Chalin. Are practitioners writing contracts?, pages 100 – 113. Springer, Berlin, Germany,887

2006.888

11 Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua Xu.889

Storydroid: Automated generation of storyboard for android apps. In 2019 IEEE/ACM 41st890

International Conference on Software Engineering (ICSE), pages 596–607. IEEE, 2019.891

12 S. Counsell, T. Hall, T. Shippey, D. Bowes, A. Tahir, and S. MacDonell. Assert use and892

defectiveness in industrial code. In Proceedings of the IEEE International Symposium on893

Software Reliability Engineering Workshops, pages 20–23, 10 2017.894

13 J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada. Contracts in the wild: A study of895

java programs. In 31st European Conference on Object-Oriented Programming (ECOOP896

2017), volume 74 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:29,897

Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.898

14 Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S899

Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely invariants. Sci.900

Comput. Program., 69(1-3):35–45, 2007.901

15 H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer. Contracts in practice. In902

FM 2014: Formal Methods. 19th International Symposium. Proceedings: LNCS 8442, pages903

230 – 46, Cham, Switzerland, 2014.904

16 G. Fairbanks. Better code reviews with design by contract. IEEE Software, 36(6):53 – 6, 2019.905

17 David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira.906

Contract usage and evolution in Android mobile applications (supplementary mater-907

ial), 2025. Available online at: https://archimendes.com/publication/2025/ecoop/908

ecoop25-AndroidContracts-SupplementaryMaterial.pdf.909

18 L. Di Grazia and M. Pradel. The evolution of type annotations in python: An empirical910

study. In Proceedings of the 30th ACM Joint European Software Engineering Conference and911

Symposium on the Foundations of Software Engineering, page 209–220, New York, NY, USA,912

2022. Association for Computing Machinery.913

19 B. Hollunder, M. Herrmann, and A. Hülzenbecher. Design by contract for web services:914

Architecture, guidelines, and mappings. In International Journal on Advances in Software,915

volume 5, 2012.916

20 Marieke Huisman and Raúl E Monti. Teaching design by contract using snap! In The Logic917

of Software. A Tasting Menu of Formal Methods: Essays Dedicated to Reiner Hähnle on the918

Occasion of His 60th Birthday, pages 243–263. Springer, 2022.919

ECOOP 2025

https://archimendes.com/publication/2025/ecoop/ecoop25-AndroidContracts-SupplementaryMaterial.pdf
https://archimendes.com/publication/2025/ecoop/ecoop25-AndroidContracts-SupplementaryMaterial.pdf
https://archimendes.com/publication/2025/ecoop/ecoop25-AndroidContracts-SupplementaryMaterial.pdf

17:28 Contract Usage and Evolution in Android Mobile Applications

21 P. Kochhar and D. Lo. Revisiting assert use in github projects. In Proceedings of the920

21st International Conference on Evaluation and Assessment in Software Engineering, pages921

298–307, 2017.922

22 Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. Assessing the relationship923

between software assertions and faults: An empirical investigation. In 2006 17th International924

Symposium on Software Reliability Engineering, pages 204–212, 2006.925

23 Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee Cho, Hayley LeBlanc,926

Pranav Srinivasan, Reto Achermann, Tej Chajed, Chris Hawblitzel, et al. Verus: A practical927

foundation for systems verification. In Proceedings of the ACM SIGOPS 30th Symposium on928

Operating Systems Principles, pages 438–454, 2024.929

24 Olivier Le Goaer and Julien Hertout. Ecocode: A sonarqube plugin to remove energy smells930

from android projects. In Proceedings of the 37th IEEE/ACM International Conference on931

Automated Software Engineering, pages 1–4, 2022.932

25 K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In933

International conference on logic for programming artificial intelligence and reasoning, pages934

348–370. Springer, 2010.935

26 B. Meyer. Applying ‘design by contract’. Computer, 25(10):40 – 51, 1992.936

27 Bertrand Meyer. Programming as contracting. Advances in Object-Oriented Software Engin-937

eering, pages 1–15, 1988.938

28 P. V. R. Murthy. Design by contract methodology. In 2018 International Conference on939

Advances in Computing, Communications and Informatics (ICACCI), pages 482 – 8, Piscataway,940

NJ, USA, 2018.941

29 A. Naumchev. Seamless object-oriented requirements. In 2019 International Multi-Conference942

on Engineering, Computer and Information Sciences (SIBIRCON). Proceedings, Piscataway,943

NJ, USA, 2019.944

30 Ricardo B Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu. Extending Ecoandroid945

with automated detection of resource leaks. In Proceedings of the 9th IEEE/ACM International946

Conference on Mobile Software Engineering and Systems, pages 17–27, 2022.947

31 Ana Ribeiro, João F. Ferreira, and Alexandra Mendes. Ecoandroid: An Android studio plugin948

for developing energy-efficient Java mobile applications. In 2021 IEEE 21st International949

Conference on Software Quality, Reliability and Security (QRS), pages 62–69. IEEE, 2021.950

32 Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu Sun, Kevin Allix,951

Tegawendé F Bissyandé, and Jacques Klein. Jucify: A step towards android code unification952

for enhanced static analysis. In Proceedings of the 44th International Conference on Software953

Engineering, pages 1232–1244, 2022.954

33 T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst. Case studies and tools for contract955

specifications. In Proceedings of the 36th International Conference on Software Engineering,956

ICSE 2014, page 596–607, New York, NY, USA, 2014. Association for Computing Machinery.957

34 C. Silva, S. Guerin, R. Mazo, and J. Champeau. Contract-based design patterns: a design958

by contract approach to specify security patterns. In ARES 2020: Proceedings of the 15th959

International Conference on Availability, Reliability and Security, New York, NY, USA, 2020.960

35 StatCounter Global Stats. Operating system market share worldwide, 2024. [On-961

line; accessed 01-April-2025]. URL: https://gs.statcounter.com/os-market-share#962

monthly-202411-202412-bar.963

36 J. Tantivongsathaporn and D. Stearns. An experience with design by contract. In 2006 13th964

Asia Pacific Software Engineering Conference (APSEC’06), pages 327 – 33, Piscataway, NJ,965

USA, 2006.966

37 K. Tao and P. Edmunds. Mobile apps and global markets. Theoretical Economics Letters,967

08:1510–1524, 01 2018.968

38 Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and Y. Liu. An empirical969

study of usages, updates and risks of third-party libraries in java projects. In 2020 IEEE970

https://gs.statcounter.com/os-market-share#monthly-202411-202412-bar
https://gs.statcounter.com/os-market-share#monthly-202411-202412-bar
https://gs.statcounter.com/os-market-share#monthly-202411-202412-bar

D. R. Ferreira, A. Mendes, J. F. Ferreira, and C. Carreira 17:29

International Conference on Software Maintenance and Evolution (ICSME), pages 35–45,971

2020.972

39 Y. Wei, C.A. Furia, N. Kazmin, and B. Meyer. Inferring better contracts. In 2011 33rd973

International Conference on Software Engineering (ICSE 2011), pages 191 – 200, Piscataway,974

NJ, USA, 2011.975

40 Z. Yu, C. Bai, L. Seinturier, and M. Monperrus. Characterizing the usage, evolution and impact976

of java annotations in practice. IEEE Transactions on Software Engineering, 47(5):969–986,977

2021.978

41 Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun Chen. Studying the characteristics of979

logging practices in mobile apps: a case study on f-droid. Empirical Software Engineering,980

24:3394–3434, 2019.981

42 Y. Zhou, P. Pelliccione, J. Haraldsson, and M. Islam. Improving robustness of autosar software982

components with design by contract: A study within volvo ab. In Software Engineering for983

Resilient Systems. 9th International Workshop, SERENE 2017. Proceedings: LNCS 10479,984

pages 151 – 68, Cham, Switzerland, 2017.985

43 Álvaro Silva, Alexandra Mendes, and João F. Ferreira. Leveraging large language models to986

boost Dafny’s developers productivity. In International Conference on Formal Methods in987

Software Engineering (FormaliSE), 2024. arXiv:2401.00963.988

ECOOP 2025

https://arxiv.org/abs/2401.00963

	1 Introduction
	2 Contracts in Android Applications
	2.1 CREs
	2.2 APIs
	2.3 Assertions
	2.4 Annotations
	2.5 Other

	3 Related Work
	3.1 DbC and Contract Usage
	3.2 Assertion Usage
	3.3 Annotation Usage

	4 Study Design
	4.1 Research Questions
	4.2 Dataset
	4.2.1 Dataset metrics

	4.3 Data Collection and Analysis
	4.3.1 Analysis Tool
	4.3.2 Usage Study
	4.3.3 First-to-Last Version Evolution
	4.3.4 Liskov Substitution Principle Study

	5 Results
	5.1 RQ1: Contract Usage
	5.2 RQ2: First-to-Last Version Evolution
	5.3 RQ3: Safety

	6 Discussion
	6.1 Answers to Research Questions
	6.2 Practical Implications & Recommendations
	6.3 User Study
	6.3.1 Methodology
	6.3.2 Results

	6.4 Threats to Validity

	7 Conclusions

