arXiv:2506.23696v1 [cs.SE] 30 Jun 2025

What Challenges Do Developers Face When Using
Verification-Aware Programming Languages?

1% Francisco Oliveira
Faculty of Engineering
University of Porto

Porto, Portugal Porto, Portugal

Abstract—Software reliability is critical in ensuring that the
digital systems we depend on function correctly. In software
development, increasing software reliability often involves testing.
However, for complex and critical systems, developers can use
Design by Contract (DbC) methods to define precise specifications
that software components must satisfy. Verification-Aware (VA)
programming languages support DbC and formal verification
at compile-time or run-time, offering stronger correctness guar-
antees than traditional testing. However, despite the strong
guarantees provided by VA languages, their adoption remains
limited. In this study, we investigate the barriers to adopting VA
languages by analyzing developer discussions on public forums
using topic modeling techniques. We complement this analysis
with a developer survey to better understand the practical
challenges associated with VA languages. Our findings reveal
key obstacles to adoption, including steep learning curves and
usability issues. Based on these insights, we identify actionable
recommendations to improve the usability and accessibility of VA
languages. Our findings suggest that simplifying tool interfaces,
providing better educational materials, and improving integra-
tion with everyday development environments could improve the
usability and adoption of these languages. Our work provides
actionable insights for improving the usability of VA languages
and making verification tools more accessible.

Index Terms—Formal verification, Verification-Aware pro-
gramming languages, Software reliability, Usability, Topic mod-
eling, Developer survey, Programming languages

I. INTRODUCTION

In today’s world, software is integral to almost every aspect
of our lives, from personal communication and entertainment
to critical systems like air traffic control and IoT devices. As
software becomes increasingly prevalent, ensuring its reliabil-
ity is essential. The importance of reliability is even greater
when considering critical applications where failures can be
life-threatening and cause extensive damage [39], such as
financial damage and risk users’ privacy.

Verification-aware (VA) languages and systems, such as
Dafny [34]], VCC [12]], Why3 [20]], and Verus [32]], go be-
yond traditional programming languages by integrating formal
verification capabilities directly into the development process.
These languages enable the verification of program correctness
against user-defined specifications or contracts, using formal
methods to mathematically prove that a program adheres to
its specification. This built-in verification makes it possible to
detect bugs early in the development cycle, offering a higher
degree of assurance about software correctness and safety.

2" Alexandra Mendes
INESC TEC, Faculty of Engineering,
University of Porto

3" Carolina Carreira
Carnegie Mellon University
INESC-ID & IST, University of Lisbon
Lisbon, Portugal

Despite their importance, the adoption of VA languages is
still low. The reason usually attributed to this is the level of
expertise required from the developers and challenges that they
often face when trying to prove a program correct. Previous
work identifies some challenges when using these tools, such
as the lack of counter-examples [49], lack of clarity of the
error messages [44], and a general difficulty in understanding
why proofs fail [24]. However, to the best of our knowledge,
no previous studies have been made to systematically collect
the challenges and struggles that VA language developers face.

In this paper, we aim to identify challenges usually encoun-
tered when using VA languages with the aim of supporting VA
language, verifier, and IDE designers to improve the developer
experience and, hopefully contribute to a wider adoption.

We conducted a literature review to identify challenges in
the use of VA languages that are documented in the literature
and used topic modeling, in particular Latent Dirichlet Alloca-
tion (LDA) [8]], to extract challenges from developer posts on
Stack Overflow. This was followed by a user study to validate
the identified challenges and improvements that can be made
to VA languages to improve adoption and user experience.

We address the following research questions:

RQI: What challenges do verification-aware language
practitioners face?

RQ2: What is the context of the first contact with
verification-aware languages?

RQ3: What improvements can be made to existing tools
to overcome those challenges?
Contributions. The main contributions of this work are:

o A collection of challenges that affect VA language devel-
opers, obtained through a literature review and the anal-
ysis of 1,420 questions from Stack Overflow, validated
and complemented by a user study with 31 practitioners.

« An overview of practitioners first contact with VA lan-
guages.

o A collection of suggested improvements, validated by
beginner and experienced VA language practitioners, that
can inform language, verifier, and IDE designers.

II. STUDY DESIGN

We used a three-step approach as shown in Figure [I] In
Step 1, we performed a literature review to understand the
context in which practitioners apply VA languages and the

https://arxiv.org/abs/2506.23696v1

Literature Review)

Database }
search

LSEVIER

e U1 Scopus

N
S

(2]

Duplicate Manual } Final
Removal Screening Analysis

723 600

stackoverflow

LDA topic modeling

Human-in-the-loop:
manual assignment semantic labels

L UserSty
{ Recruitment }}{ @ omn© }

Quantitative Analysis
ra
Qualitative Analysis

Validation of challenges and improvements
RQ1 J RQ3

1420
Questions

Pre-processing

‘gl 18 Beginners

Developer challenges

9
J \
Topic-based challenge taxonomy
RQ1 RQ1 RQ2

Context of usage

Fig. 1. Overview of the three-step research methodology.

challenges that arise from their use. Step 2 consisted of
topic modeling, in particular using Latent Dirichlet Allocation
(LDA) [8], to extract challenges from developer posts on Stack
Overflow. Finally, Step 3 consisted of a user-study to validate
the challenges collected in the previous two steps, to explore
first contexts of users’ contact with these languages, and to
explore potential improvements. Steps 1, 2, and 3 contribute
to answering RQ1. Step 3 contributes to answering questions
RQ2 and RQ3.

A. Verification-Aware Languages Considered

We consider as VA programming languages those that
natively support constructs for automated program verification,
such as pre-conditions, post-conditions, and invariants. For
our search queries, we defined a set of VA languages to be
considered, which resulted from a search of Verifiable Pro-
gramming Languages used in industry taken from the Formal
Methods Europe Industry Committee’s websiteﬂ consulted
on 20/11/2023. The languages that did not comply with our
definition of VA languages were removed.

Following a three-person analysis of the technologies
listed, we arrived at the following set: Bandera ,
Dafny [34]], Escher C Verifier [18]), Eiffel [36], Frama-C [14],
Java PathFinder [26], JML [33], mbeddr [51]], Spec# [6],
Spark Ada [5], VeriFast [28], VCC [12]], Whiley [40], and
Why3 [20].

B. Literature Review

To understand from existing work what challenges are faced
by practitioners when using VA languages, we performed a
literature review. Next, we present all the steps followed.

We queried the ACM Digital Library, IEEE Xplore, Scopus),
and Web of Sciencel The research query was developed
following an iterative methodology. Firstly, we identified the
following relevant articles that we would like to find with
our research query: [27], [37], [44], [49], [52]. Then, we
developed an initial search query based on keywords from
the collected articles. The resulting query was then tailored
to find as many articles as possible, while also containing
the previously identified ones. We only accepted articles with

Uhttps://fme-industry.github.io/

ten or fewer years because, considering we are trying to
understand developer practices and challenges, older articles
could contain issues already addressed or outdated. We also
included in the query the set of VA languages identified in
Section [[I-A] The resulting query is as follows:

("theorem proving" OR "theorem proof"

OR "deductive verification" OR "deductive methods"
OR "formal verification" OR "formal specification"
OR "contract programming" OR "design by contract"

OR "programming by contract" OR "Bandera" OR "Dafny"
OR "Escher C Verifier" OR "Eiffel" OR "Frama-C"

OR "Java PathFinder" OR "JML" OR "mbeddr" OR "Spec#"
OR "Spark Ada" OR "VeriFast" OR "VCC" OR "Whiley"

OR "Why3")

AND industr*

AND (challeng* OR issuex OR drawback? OR constraint?

OR limitation? OR obstacle? OR difficultx)

The query only searches in the field Abstract because it is
the field that all databases support. The queries were conducted
on 26/12/2023, resulting in 1024 articles. After 729 duplicates
were removed, 600 articles were screened.

The following exclusion criteria were applied. These aim
to include the maximum number of relevant articles. When
in doubt, the full-text screening was applied. Title Screening:
1) the title is not related to formal verification (or derived
terms) — e.g. “Solidification Principle in Large Vertical Steel
Casting Under the EMS Effect”; 2) the title mentions formal
verification tools that are not VA languages — e.g. Alloy,
SysML. Abstract Screening: 1) the term formal methods or
related is used in contexts not related to our research —
e.g. formal verification of startup models; 2) the tools or
formal verification methods mentioned are related to the area
of software engineering, but the application area is not aligned
with the our research — formal verification of system models.
Full-Text Screening: 1) the article does not mention any
challenges; 2) the challenges are not related to the application
of VA languages (e.g., the article talks about the challenges
of integrating Dafny with Solidity).

After this process, nine of the 600 articles were considered
relevant and were analyzed (see [[II-A).

C. Stack Overflow Q&A Study

This section details how we extract challenges from de-
veloper posts on Stack Overflow, a widely used Q&A plat-

https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/
https://www.webofscience.com/
https://fme-industry.github.io/

form where developers from diverse backgrounds openly
discuss real-world programming problems at scale, making
it a rich and authentic source for empirical studies [1[]—[3],
(701, 1171, 125], [38], [41]. However, manually analyzing the
vast amounts of data available in these sources may become
infeasible, particularly as the dataset size increases. Therefore,
we use topic modeling, a popular analytical tool for evaluating
data, as an approach to identify groups of similar words,
or topics, within the text [50]. One of the most popular
algorithms for topic modeling is Latent Dirichlet Allocation
(LDA) [8]l, an unsupervised machine learning algorithm that
models automatically extracted topics in corpora. It is based
on the idea that each document is a mixture of topics, and each
topic is a mixture of words. LDA aims to discover how much
of each topic is in each document and how much of each word
belongs to a particular topic. The algorithm outputs probability
distributions that quantify the proportion of each topic within
a document and the association of each word with a given
topic [47]. Several previous studies have used unsupervised
machine learning, in particular LDA, for categorizing forum
posts [1]-[3[I, [71, [17], 125], [38], [41].

Our analysis of forum posts using topic modeling follows
from previous work and is divided into four main steps:

1) Data Collection: we collect data related to the considered
VA languages from Stack Overflow.

2) Data Pre-processing: we implement various data pre-
processing operations, such as removing all non-
alphanumeric characters and markup language tags, in-
cluding the ones that envelop code snippets and stop
words, and standardization of words through Porter stem-
ming [42] or lemmatization [19].

3) Model Training: LDA is trained using the dataset pre-
processed in the previous step.

4) Tag Labeling: the tags are labelled, looking at words and
topics belonging to each tag.

Next, we describe each step in detail.

a) Data Collection: Three popular Stack Overflow post
datasets are: SO official data dumps [21]], SOTorrent [4], and
SE Data Explorelﬂ). The first is distributed as a very large
XML file, which we found difficult to process; the second
is not updated since 2020; and the third is available through
a human-centered interface, making it difficult to automate
data collection. Therefore, we decided to use the official Stack
Exchange AP as, similarly to SE Data Explorer, the API
provides the newest data at the time of querying, but in a
computer-friendly format.

We identified the tags we would use to query the API
endpoint and settled with a variation of a list of VA languages
presented in Section From our observations of the Stack
Overflow tag lis only hyphenated tags are supported, so
“Escher C Verifier”, “Java PathFinder”, and “Spark Ada” had
to be transformed to accommodate this requirement. In the

Zhttps://data.stackexchange.com/
3https://api.stackexchange.com/
4https://stackoverflow.com/tags

final list mapping between official VA language names and
the tag names, “Escher C Verifier”, “Java PathFinder”, and
“Spark Ada” became “escher”, “pathfinder”, and “spark-ada”,
respectively.

Moreover, we decided only to query the /questions endpoint
because we are looking for challenges commonly found in
questions but not in the follow-up interactions, i.e., answers
and comments.

We ended up with 1420 questions, most of which were about
Dafny and Frama-C. The distribution of questions was Dafny:
530, Frama C: 474, Eiffel: 289, Spark Ada: 55, Why3: 52,
JML: 44, and Spec#: 16.

b) Data Pre-processing: Since we gathered data from
the Stack Exchange API, the question bodies contain code
snippets and tags (similar to [21] and [4]). With that in mind,
we built four pre-processing pipelines, with each pipeline
combining a subset of the following nine steps.
Pre-processing steps. Based on prior research, we considered
the following nine pre-processing steps:

e __remove_code: Removes all tags and code snippets from
the body of a given question, wrapping it into a div tag,
and then performing a depth-first search into its children,
removing all code and pre tags. Only the inner text of the
other tags, such as anchor, strong, paragraph, etc, and
text that is directly a child of a given tag is kept. The
resulting text is then trimmed and joined with a white
space. Based on [7]], [3], [25], [38], [2[l, [17]], and [41]].

o __gensim_preprocessing: Performs common pre-
processing tasks using the functions strip_numeric,
strip_multiple_whitespaces, and strip_punctuation from
the GensinE] library. This step removes digits from the
initial string and multiple consecutive white spaces,
leaving just one separating the words. Finally, it strips
all the punctuation from the input string. Based on [3]],
[25]1, [38]I, 2], [17], and [41].

o __lemmatize_body: Starts by tokenizing the input string
using NLTK’s word_tokenize function. After tokenizing,
we apply stemming using NLTK’s WordNet lemmatizer.
This lemmatizer needs to receive the part of speech of
each word. Since identifying specific parts of speech is
out of the scope of our work, we decided to consider
every word as a verb since we found that verbs and plural
nouns were transformed into their stems. Based on [25]).

o __remove_stop_words: Filters out stop words using the
NLTK stop words corpus (e.g., “a”, “an”, “the”, “of” and
“and”). This is an approach used by [25[, [1]], and [41]].

e __transform_bigrams: Takes a list of words and returns a
list of bigrams using NLTK bigrams function. This step
was also used by [1f], although the authors used Gensim
to build the bigrams.

e __make_lower_case: Transforms all words into their low-
ercase version.

e __remove_handpicked: Removes words that, after exam-
ination, we considered as not adding value to the trained

Shttps://radimrehurek.com/gensim/

https://data.stackexchange.com/
https://stackoverflow.com/tags
https://radimrehurek.com/gensim/

model. Based on [2] and [41].

o _ remove_uncommon: Removes words with less than
three uses since these words can not form patterns.

e _ remove_small: Removes words with less than two
characters since we considered that words with that size
could not express meaningful value.

Pre-processing pipelines. After collecting the data, we pro-
cess the questions using the four pre-processing pipelines
listed below, developed as a combination of the nine steps
listed previously. All the pipelines are based on [25] because
they lemmatize the words before removing the stop words.

This pipeline is the simplest and
produces a list of individual words. The exact
sequence of the steps is: _ remove_code —
__gensim_preprocessing—__lemmatize_body —
__make_lower_case — __remove_stop_words.

2) baseline_bigram: Create bigrams from the list of words
resulting from the baseline pipeline. Based on the work
by [1]]. The steps are: baseline —__transform_bigrams.

3) rem_words_baseline: Similar to the regular baseline
pipeline but incorporates the innovation of [2] and [41]
of removing domain-specific words as well as an addi-
tional removal of words with less than three uses —
since these words can not possibly form patterns —
and less than two characters — since we considered
that words with that size could not express meaningful
value. The sequence is: baseline— __remove_handpicked
—__remove_uncommon — __remove_small.

4) rem_words_bigram: Based on the rem_words_baseline
but, similarly to baseline_bigram, ends with a step that
transforms the resulting list of words in a list of bigrams.
Steps: rem_words_baseline —__transform_bigrams.

c) Model Training: To configure the LDA algorithm,
several parameters, known as hyperparameters, must be set:
the number of topics (K); the number of iterations (i.e.,
optimization steps); the number of passes over the training
corpus; to what extent questions mix topics («) — a high value
means that questions cover a wide range of topics; and to
what extent questions mix words (5)—a high value means
that topics are likely to contain a broad range of words, rather
than being focused on a small, specific set of terms.

Each of the four pre-processing pipelines presented in the
previous subsection was tested against each combination of
the following hyperparameters: K ranging from 2 to 40 in
steps of 2 to capture all identified challenges, and from 500
to 3000 in steps of 500 to align with prior work; we also tried
50 iterations, the Gensim default. We set the number of passes
at 1 (Gensim default) and 5 (as per [25]). For 3, we tested
0.1, 0.01, and None (Gensim default), while « followed the
common formulation o = 50/K from prior studies [2], [3].
Final Model. The selection of the final model configuration
involved an evaluation across multiple training runs and cri-
teria, which, due to space limitations, we briefly detail below.
More details can be found in the supplementary material.

This process began with an initial training run using the

1) baseline:

full dataset of collected Stack Overflow questions. This run
aimed to evaluate the performance of different pre-processing
pipelines and model configurations. This produced: 4 model
runs, one for each pipeline; 840 model configurations resulting
from the combination of LDA hyperparameters; and 3360
models, four for each configuration. To account for the non-
deterministic nature of the LDA algorithm, we trained four
models for each combination of the hyperparameters.

Model performance was evaluated using two primary met-
rics: topic coherence (Cyprass) [43]] and perplexity score
(logarithm of perplexity) [8]. We decided to use Cyprass to
evaluate our models since it is a standard metric that can
be quickly calculated. We also analyzed the logarithm of the
perplexity, which measures how likely an outside observer is
to predict the values drawn from a model. The values used are
the output of the function log_perplexityﬁ] in Gensim.

For each combination of pre-processing pipelines and com-
bination of hyperparameters, four models were trained. The
performance of each combination (pipeline X combination
of hyperparameters x 4 models) was assessed by calculating
the average coherence and perplexity scores, as well as their
standard deviations across the four models. This allowed to
identify configurations that were not only high-performing but
also consistent. Configurations with high standard deviations
were considered unstable. Taking into consideration LDA’s
non-deterministic nature, this strategy allows to detect if a
score is exceptionally good or if the hyperparameters are able
to make LDA consistently output good models.

The baseline and baseline_bigram pipelines resulted in con-
figurations with significantly high standard deviations in coher-
ence, indicating instability. The rem_words_baseline pipeline
showed better overall performance and, unlike baseline, it re-
moved words that were not helpful for identifying challenges.
The rem_words_bigram pipeline generally showed higher
degradation in coherence compared to rem_words_baseline.
Based on this initial analysis, the rem_words_baseline was
chosen. A configuration with 16 topics within this pipeline
was initially selected for further consideration.

As further explained in questions with low proba-
bility of belonging to a topic were discarded and open card
sorting [48|] was performed based on the top 30 words and
top 20 documents for each topic. Looking at the composition
of the topics, we obtained 209 unique questions from the 320
that were assigned to the 16 topics. Most questions appeared
only once, indicating diverse topics.

After applying open card sorting to the clustered questions,
we obtained the tag distribution depicted in Figure[2] The most
frequent tag is the not-suited tag with 79 questions, meaning
that around 38% of questions were considered inadequate
to answer RQ1. Of the 16 resulting topics, in 15, the most
frequent tag was not-suited, indicating that the topics are not
representative of any challenge.

Shttps://radimrehurek.com/gensim/models/ldamodel html#gensim.models.
Idamodel.LdaModel.log_perplexity [last access 31st August 2024]

https://figshare.com/s/bc220b6c300b46c97d89
https://radimrehurek.com/gensim/models/ldamodel.html#gensim.models.ldamodel.LdaModel.log_perplexity
https://radimrehurek.com/gensim/models/ldamodel.html#gensim.models.ldamodel.LdaModel.log_perplexity

Fig. 2. Frequency of each tag (initial training)

804 79

Tag Names

To overcome this issue, we decided to filter out these ques-
tions and run the training in a dataset without the 79 inadequate
questions. A second training run was then done using the
filtered dataset. Again, we applied the four pre-processing
pipelines and explored various hyperparameter configurations
and used the same evaluation metrics as in the first training
run. Similar performance patterns to those obtained in the first
training run were observed across the pipelines, with base-
line, baseline_bigram, and rem_words_bigram showing high
errors. The rem_words_baseline pipeline again demonstrated
consistent performance for configurations filtered by lowest
error. Considering the similar performance, we again chose
the rem_words_baseline pipeline to pick the best configuration
and model. We chose the configuration with eight topics
because it resulted in a number of topics that allowed for the
identification of challenges consistent with prior literature, as
discussed in Section Looking at the topics, we observe
these are composed of 160 questions, from which 145 are
unique. This indicates that this model is diverse.

After performing open card sorting, we end up with the tag
diversity shown in Figure [3] Despite being the most popular
tag, the not-suited questions only comprise 19% of the overall
questions against the 38% obtained in the previous section.
Based on our analysis, we decided that this model was suited
for naming and challenge identification.

d) Topic Labelling: This process involved analyzing the
chosen model configuration’s output. Questions were filtered,
discarding those where the probability of belonging to a topic
was less than % (where n is the number of topics). The
reasoning for this was that % is the probability of randomly
assigning a document to a given topic, thus we only accepted
probabilities greater than the random assignment.

After filtering the questions with low probabilities, we
sorted them and performed open card sorting based
on the top 30 words and top 20 documents for each topic.

Fig. 3. Frequency of each tag (second training)
30

254

N
o
L

Number of Questions
G

Tag Names

The labeling for each topic was discussed among the team
members until a consensus was reached.

For the final chosen model configuration, which had eight
topics, the labeling process involved analyzing the frequency
and distribution of the tags that were created during the open
card sorting process.

For Topic 0, even though the most common tag is not-suited,
the label Memory Model Understanding was assigned, influ-
enced by the second most common tag, heap-understanding.
Topic 1 was labeled Language Understanding, driven by
the frequency of the lack-feature-knowledge and understand-
behaviour tags, and the occurrences of logic-error, loop-
invariant, understand-failures, and lacking-documentation.
Topic 2 was labeled Not Suited because no clear relationship
between the clustered questions was found. Topic 3 was la-
beled Environment Setup as most of the questions are related
to to the configuration-hardship tag. Topics 4 and 5 were
labeled Non Relevant as no clear relationships were found
between the top question label. Topics 6 and 7 were labeled
Proof Elaboration, because both contain many questions re-
garding the label proof-strategy and some questions regarding
loop-invariant. These labeled topics were then used to identify
broader categories of challenges, which are presented in the

Section [[IT-Bl

D. User Study

To better understand the challenges faced by VA language
users and assess the relevance of the issues identified in our
prior qualitative analysis, we conducted an online survey study.
We designed the study to capture both quantitative and qualita-
tive feedback, drawing on the experiences of participants with
different levels of familiarity with VA languages. We provide
the full protocol in the supplementary material.

1) Survey Design: We start the survey with a section about
background information, where we ask about familiarity with
VA languages and years of experience. We also ask about

https://figshare.com/s/bc220b6c300b46c97d89

participants’ initial contact with VA languages and how they
learned to program with them. We then attempt to validate
the answers to RQ1. We use matrix-style questions with a 5-
point Likert scale to ask questions about challenges related
to Proof Elaboration and Environment Setup. We also ask
participants about a subset of language-agnostic challenges
identified in Section [lII-B| and language-specific challenges
with Dafny and Frama-C. We only showed these sections
to participants who mentioned having experience with these
languages.

We ask two open-ended questions about additional chal-
lenges not identified in the previous parts of the study and
suggestions for improving the adoption of VA languages.
Following these, we use a matrix-style closed-ended question
to ask about the suggestions we developed based on the
problems identified previously. Open-ended questions were
presented before the closed-ended questions to prevent bias
and allow the participants to think more freely without being
conditioned by the options they already saw.

2) Recruitment: Our sample had a total of 31 participants.
We recruited participants using our social media, professional
network, and snowball sampling. We began by distributing
the survey to 15 students of the 2023/2024 edition of [Formal
Methods Course in First Authors’ Institution]. Using Proxy-
curﬂ we gathered 28 profiles of LinkedIn users from the US
with software and formal verification skills. We also contacted
16 industry professionals from our professional network and
26 Dafny contributors on GitHub, whose contact information
was public. Additionally, we shared our survey in social media
through X, formerly known as Twittelﬂ We used snowball
sampling by asking our contacts to distribute the survey to
relevant members of their professional and student networks.
We also distributed the survey through Frama-C’s mailing list.
We divide participants by years of experience: more than three
are considered experienced, all others are beginners.

Sample. Most of our sample identify as male and are
employed in the computing field with formal education. Most
experienced participants have some graduate or professional
degree, while most beginners only have a bachelor’s degree.
See Table [[| for complete demographic information.

3) Quantitative Analysis: For our quantitative data, we use
the Mann-Whitney U test to check whether the data from
two groups, beginners and experienced, differ significantly. We
chose a non-parametric test because our data does not follow
a normal distribution. We use a Friedman test to compare
answers to statements within the same group. If the Friedman
test is significant (p < 0.05), we then use the Wilcoxon signed-
rank test to make pairwise comparisons of each statement
and understand which particular statements are significantly
different from the others. Finally, we analyze the frequency of
each response to understand if the participants encountered the
challenge. To analyze Likert scale data where we have both
the Not Sure and Neutral options, we remove the Not Sure

"https://nubela.co/proxycurl/, [last access 29th July 2024]
8https://x.com/

TABLE I
OVERVIEW OF PARTICIPANT DEMOGRAPHICS AND EXPERIENCE

Beginners Experienced Total (%)
Gender
Male 14 11 80.6%
Female 4 1 16.1%
Prefer not to say - 1 3.2%
Age
18-24 years 15 1 51.6%
25-34 years 3 2 16.1%
35-44 years - 7 22.6%
45-54 years - 1 3.2%
55-64 years - 2 6.4%
Highest Education Achieved
Some college, no degree 2 - 6.4%
Associate’s or technical degree - 3.2%
Bachelor’s degree 14 1 48.4%
Graduate/professional degree 2 11 41.9%
Race
Asian 1 1 6.4%
Black 4 - 12.9%
White 12 8 64.5%
Prefer not to say 1 4 16.1%
Currently Employed in CS
Yes 7 13 64.5%
No 9 - 29.0%
No, but have been in the past 2 - 6.4%
Formal CS Education
Yes 18 11 93.5%
No - 2 6.4%
Total Participants 18 13 100%

responses from the statistical test, assuming that these were
due to the participant not understanding the statement.

4) Qualitative Analysis: Most of our survey consisted of
closed-ended questions. However, we asked two open-ended
questions about challenges and possible solutions to chal-
lenges. We used deductive and inductive coding to analyze
the qualitative data derived from these questions. Two coders
did two independent rounds of coding. In the first round, the
initial coder designed the first version of the codebooks that
both coders used. This first codebook was developed with
prior knowledge of the types of challenges identified in an
earlier portion of the study. After completing the first pass, the
codebook was refined, and the coders met to discuss the added
and modified codes. Following these updates, both coders
independently applied the revised codebooks to the dataset
in a second round of coding. After this, the coders met to
resolve discrepancies in their coding and reached a consensus.
The process resulted in two finalized codebooks: one for
suggested improvements, consisting of 13 codes, and another
for challenges, consisting of 14 codes. Each participant’s
response could have up to 5 different codes.

https://nubela.co/proxycurl/
https://x.com/

III. WHAT CHALLENGES DO VERIFICATION-AWARE
LANGUAGE PRACTITIONERS FACE? (RQ1)

A. Findings from Literature Review

From the existing literature, we identified several chal-
lenges, such as: behavior dependent on previous executions,
which include challenges related to the verification of prop-
erties where the behavior is influenced by previous execu-
tions [16], [23]]; behaviour inconsistency, as verification suc-
cess changes depending on the solver [49]]; cost of applying VA
languages 52|; feedback quality, which includes the lack of
counter-examples by some tools [49], the lack of clarity of the
error messages [44], and a general difficulty in understanding
why proofs fail [24]; handling boolean values, i.e. challenges
related to verifying properties about boolean values [15], [23]];
imprecise specifications [23], [30]; increasing the scale of ver-
ification, which includes challenges related to the integration
of multiple verified functions [30]], the scaling of verification
time [15]], the difficulty of tracking and maintaining anno-
tations [[15]], [27]], and general claims about scalability [37]];
integration with hardware, including difficulties related to the
verification of functions that interact with hardware, often
resulting in side effects [16]]; integration with other tools [27];
lack of features to support verifying some behaviors [30], [45]];
lack of verified APIs [27|]; lacking support for specific tasks,
such as lack of support for floating-point arithmetic [27], [37]],
concurrent software [27]], and reflection [27]] verification; loop
invariant discovery [24], [44]]; need for automation, which
includes the need for automation so that deductive verification
can be widespread [37[]; insufficient [27|], [44], [49] and costly
[27], [52|] support and documentation; switching costs, which
includes authors that considered the lack of interoperability
between tools and the cost to switch them an obstacle for
the adoption of VA languages [52]; and type conversions,
including challenges related to the verification of implicit [23]]
or heterogeneous [15] type conversions.

B. Findings from Stack Overflow Q&A Study

In this section, we group the identified challenges by the
four topics identified in Due to space restrictions, full
details can be found in the supplementary material.

a) Proof Elaboration: The challenges in this class are
related to the programming paradigm, so these are language
agnostic. The first challenge is related to creating a proof strat-
egy. In many question, authors could not even start the proof,
not knowing what proof strategy to choose. This challenge
was observed in nine questions.

The second challenge is related to completing a proof.
In contrast with the previous challenge, these authors could
start to design a proof strategy that then proved impractical
in verifying the properties of the code. This challenge was
observed in three questions.

The third challenge is related to authors who chose a non-
ideal strategy to prove the properties of the code; for example,
choosing a proof by induction when a proof by contradiction
would be easier. This was observed in one question.

The fourth challenge concerns identifying and expressing
the necessary loop invariants to verify loops. This challenge
was observed in five questions.

The fifth challenge, observed in one question, is related to
the fourth and concerns identifying and expressing a valid
decrease clause that proves that loops or recursion functions
terminate. This challenge was observed in one question.

The sixth challenge concerns not being able to gather
feedback, i.e., whether the contracts are respected due to the
verifier timing out. This was observed in two questions.

b) Environment Setup: The challenges in this topic
are language agnostic. The first class of challenges is related
to dependency installation, which were identified in four
questions. It includes challenges related to missing depen-
dencies, incompatible dependency versions, and dependencies
not being found. The other class of challenges is related to
unsupported use cases. This challenge is represented by one
question, in which the user wants to configure the version of
function declarations used by the language server. The last
class of challenges is missing installation instructions, also
present in one question.

c¢) Memory Model Understanding: The challenges in
this topic are language-specific. We identified three challenges
among Dafny programmers, all related to the modifies clause.
The modifies clause specifies the set of memory locations that
a method, iterator, or loop body may modify [35].

The first challenge is related to the user applying a modifies
clause to a given memory location, holding a reference to an
object within the scope of a method but only changing the
properties of the given object inside a loop. Dafny assumes that
the loop might change the object to which the memory location
is pointing, thus making verification based on the previously
set object properties impossible. The programmer must create
an invariant saying that the memory location always points to
the same object.

The second challenge is related to programmers not under-
standing which variables are affected by the modifies clause,
identified in two questions. In both, we see that the authors
fail to acknowledge what is the right target of the modifies
clause when the target property is a memory location to an
object: one author is missing a modifies this clause; the other
tries to modify a property of the class while using modifies
this instead of including modifies this.property_name.

In another question, we observed a similar challenge, but
the clause the author is using is the reads clause. The reads
clause marks all the heap memory locations the function is
allowed to read [|35].

d) Language Understanding: Similarly to the previous
topic, most of the challenges in this topic are related to features
that are language-specific, related to Dafny and to the Frama-C
WP Plugin, which uses ACSL as an annotation language.

For Dafny, in one of the questions, the author seemed to
lack knowledge about partial functions. The second ques-
tion is about the fuel attribute in Dafny using an example
function. Another question concerns an author that fails to
understand the error message provided by the verifier about

https://figshare.com/s/bc220b6c300b46c97d89

a type definition. Upon further inspection, we considered
the message self-explanatory for developers who knew about
subset types and witnesses. In the final question, the author
fails to acknowledge what constructs are opaque. In Dafny,
when a construct is opaque, the verifier does not introspect it
to derive pre-conditions and post-conditions — the developer
must define the contract. In this specific case, the developer
forgot the constructor’s post-condition.

Regarding the Frama-C questions, in one of the questions,
the author is trying to use a feature defined in the ACSL
Reference Manual but not implemented by the Frama-C WP
Plugin. In another, the author wants to prove that, given
the same arguments, the function always returns the same
values using ACSL. The accepted answer claims that this
is impossible in ACSL. In the third question, the author is
trying to use a C11 specification feature not implemented by
the Frama-C pre-processor at the time of writing. In the final
Frama-C question, the accepted answer claims that the author
fails to acknowledge the need for loop assigns in the presented
loops. The question has some loop assigns expressions and
was edited 8 hours after creation, presumably to add them.

The following questions are considered language agnostic.
In the first, the author wants to prove a lemma in Dafny.
The original code of the author causes an internal error in
Dafny 4.7.0. According to the accepted answer, an assertion
was missing to make the verifier accept the proof. Because
the need for the assertion is probably tied to the internal
verification mechanism, we considered that the proof elicits
a lack of language understanding, namely the underlying
verification mechanisms. In the second question, the author
is trying to understand the translation of mapping WhyML
code into the SMT’s encoding to understand how the proofs
for ACSL annotated programs are provided. This question is
not a challenge but introduces a need for understanding the
underlying verification mechanisms. The last question contains
a simple syntax error where the author does not use the correct
syntax to write comments in ACSL.

C. Findings from User Study

a) Proof Elaboration Challenges: In this section, we
validate seven challenges related to Proof Elaboration. Of the
seven challenges, presented in Table only PFE7, which
addresses difficulties in expressing the necessary clause to
prove loop/recursion termination, had a significant p-value
(p = 0.02666), this means that PE7 is the only PE challenge
significantly worse for beginners than experienced users. All
other challenges had a non-significant p-value (p > 0.05) when
comparing beginners and experienced users.

To assess differences between the seven conditions across all
participants, we conducted a Friedman test. The results indi-
cate a significant difference between the conditions, chi?(6) =
27.79, p = 0.0001. To assess these differences, we conducted
pairwise comparisons with a Wilcoxon signed-rank test with
Bonferroni correction (see Table [III). The results indicate that
there were significant differences between PFE; and PF;
(p = 0.023) and between PEy; and PE; (p = 0.032). No

TABLE II
PROOF ELABORATION CHALLENGES

ID Challenge Description

PE, Difficulty designing proof strategies accepted by the validator.
PE> Difficulty completing designed proof strategies.

PE3 Tendency to choose non-ideal proof strategies.

PE, Inability to identify necessary loop invariants.

PEs Inability to express necessary loop invariants.

PEg Inability to identify clauses proving termination.

PE7 Inability to express clauses proving termination.

other comparisons reached statistical significance after the
Bonferroni correction (all p > 0.05). This means that P Er, the
challenge of expressing loop/recursion termination clauses is
a significantly less important problem than PE; — designing
proof strategies —and P Es — completing proof strategies.
Our results show that most developers struggled with de-
signing proof strategies (PE7, 64.5%). The challenge related
to difficulty completing proof strategies (P’ E5) was more split
with 48.4% agreeing that this is an issue for them and 22.6%
disagreeing. When it comes to searching for the right proof
strategies (PEs3), we saw a similar split with 48.4% agreeing
and 22.6% disagreeing it is a challenge. Identifying (PE,)
and expressing (P E5) loop invariants and termination clauses
(PEg and PE7) does not seem to be a problem for most.

b) Environment Setup Challenges: While we do not
see a significant difference between beginners and experts,
most developers did not encounter dependency conflicts when
installing verification tools with 67.7% agreeing this is not a
problem. Similarly, the challenge of finding the correct version
of a verification tool compatible with a preferred IDE was not
common (77.4% did not consider this a challenge).

c) Feature Knowledge Challenges: Here, we do not
see a significant difference among experienced users. How-
ever, most developers, particularly beginners, struggled to
understand how their high-level code is translated to the
underlying SMT code, while more experienced developers felt
confident in this area. When it came to translating proofs from
other mediums (e.g., paper) to the verification language, most
developers did not report significant difficulties. However,
experienced developers showed relatively higher agreement
with this challenge than beginners. Further investigation is
needed to understand these trends fully.

d) Dafny Challenges: Most participants did not face
significant issues understanding the “modifies” and “reads”
clauses or distinguishing between opaque and non-opaque
statements. However, some developers still struggled with ex-
pressing the immutability of variables, and many participants
were unfamiliar with critical concepts like the fuel attribute,
partial functions for reasoning about high-order functions, and
using witnesses to prove the non-emptiness of type definitions.

¢) Frama-C WP Plugin Challenges: None of these
challenges had a significant p-value (p < 0.05) when com-
paring beginners and experienced users. Most developers felt
confident in their understanding of the different memory mod-
els and their ability to choose the correct model for proving
code properties and in selecting variables for “loop assigns”

TABLE I
PAIRWISE WILCOXON SIGNED-RANK TEST RESULTS WITH BONFERRONI CORRECTION FOR MULTIPLE COMPARISONS. *SIGNIFICANT AT ADJUSTED
p — value < 0.05.

PE; PE; PE3 PE4 PEs PEg PE;
PE; - 95.5, 1.000 144.0, 1.000 172.5, 0.237 150.5, 0.093 207.5, 0.172 263.5, 0.023*
PE, - - 80.5, 1.000 143.5, 1.000 139.0, 0.368 169.0, 0.336 189.5, 0.032*
PE3 - - - 178.5, 1.000 148.5,0.611 205.5, 0.811 184.5, 0.058
PE4 - - - - 26.5, 1.000 60.0, 1.000 86.0, 1.000
PEs - - - - - 104.5, 1.000 88.0, 1.000
PFEg - - - - - - 49.5, 1.000
PE; - . . . - - .
statements. Some developers also identified missing features TABLE IV

in Frama-C’s C specifications and noted that certain features
available in other plugins were absent in the WP Plugin.

f) Additional Challenges: The most frequently reported
challenges were “Tool Performance Issues” and ‘“Poor Er-
ror Messages and Feedback,” each mentioned seven times.
“Complex Language Features and Low-Level Operations” was
reported six times, followed by “Specification and Annotation
Challenges” with five occurrences. Both “Understanding Ver-
ifier Capabilities” and “Learning Curve” were identified four
times each. Additional challenges included ‘“Mindset Shift,”
“Scalability and Large Project Integration,” and “IDE Inte-
gration,” each reported twice. The following challenges were
identified once each: “Lack of Documentation,” “Conflicts
with Performance Optimization,” “Proof Stability,” “Transla-
tion of Algorithms,” and “Lack of Proof Automation.”

RQ1: VA language practitioners most commonly face
challenges in designing and completing proof strate-
gies. The only challenge where considerable differences
between beginners and experienced users were identi-
fied is proving loop/recursion termination, though this
issue was not common among most participants. On
the other hand, this challenge is significantly less im-
portant than the challenges of designing and completing
proof strategies. Language-specific semantics, such as
frame specifications (modifies, loop assigns) and proof
termination clauses, despite being identified in Stack
Overflow, are not confirmed as challenges in our user
study. While environment setup is less problematic,
feature knowledge challenges were confirmed, with
beginners struggling more with SMT translation, and
experienced developers with translating proofs to the
VA language. Fourteen new challenges were identified,
with the most reported ones being “Tool Performance
Issues”, “Poor Error Messages and Feedback™, “Com-
plex Language Features and Low-Level Operations”,
and “Specification and Annotation Challenges”.

IV. WHAT IS THE CONTEXT OF THE FIRST CONTACT WITH
VERIFICATION-AWARE LANGUAGES? (RQ2)

To understand the educational and professional pathways
that lead individuals to work with VA languages, we asked

CHARACTERIZATION OF PARTICIPANTS BASED ON THE CONTEXT IN
WHICH THEY FIRST LEARNED ABOUT VERIFICATION-AWARE LANGUAGES.

Context Frequency
Optional University Course 22
Work Context 15
Online Discussions 3
Mandatory University Course 2
With university and enterprise colleagues 1
Self-learning 1
Was bored in high school 1

all participants two questions, one about where they first
learned about VA languages and another about where they
learned to program with VA languages. In our sample, we
have 18 beginners and 13 experienced programmers. Most
beginners had their first contact and learned VA languages
in an optional university course (16 participants, 89%), with
the exception of two participants who had their first contact
in a work context. On the other hand, most experienced
developers had contact with VA languages in a work context
(12 participants, 92%). Overall, the most frequent response
for both groups was a university course (77%) and work
context (48%). Three participants mentioned online discus-
sions, one mentioned “university and enterprise colleagues”
(P17), another reported “self-learning” (P18), and finally, one
participant said their first encounter was due to being “bored in
high school” (P28). From our observation, it seems that most
participants learn about VA languages as a choice of education
or career path. Table |[[V| summarizes the results.

When it comes to their experience programming with VA
languages, their responses were consistent with their first con-
tact. Most participants reported learning how to program in a
university course (22 participants, 71%) and being self-taught
(14 participants, 45%). When considering only experienced
users, 11 participants (85%) are self-taught and 10 participants
(77%) learned in a work context.

TABLE V
CODEBOOK WITH CODE FREQUENCY FOR THE PROPOSED SOLUTIONS
SUGGESTED BY PARTICIPANTS

Code

Better Documentation and Learning Materials
Integration with Mainstream Languages and Tools
Improved Usability

Better Error Messages and Feedback
Improved Automation

Increased Awareness and Education

Better Debugging and Profiling Tools
Industry Demand and Investment

Easier Installation and Better Tool Support
Use of Common Specification Methodologies
Skepticism about Practical Use

Reusable Blocks

Exposing Internal Proof State

— RN RN WWWWWRARMW| H

RQ2: The context of the first contact with VA lan-
guages seems to vary by experience level. Most begin-
ners first encounter VA language in university courses,
while most experienced programmers are introduced
to VA languages in a work context. Moreover, as
users gain experience, self-teaching emerges as a key
mechanism through which they acquire knowledge.

V. WHAT IMPROVEMENTS CAN BE MADE TO EXISTING
TOOLS TO OVERCOME THOSE CHALLENGES? (RQ3)

The user survey combined closed and open-ended questions.
The closed questions aimed to validate the following specific
proposals derived from our earlier analysis: 1) Create user-
readable counter-examples to complement error messages.
From our analysis, counter-examples not always seem helpful
and their use was even discouraged in some cases; 2) De-
velop official tutorials on common verification exercises (e.g.,
Fibonacci sequence, greatest common divisor). Neither Dafny
nor Frama-C provides guided tutorials on their official pages;
3) Implement a search feature in the documentation. Neither
Dafny nor Frama-C include a search feature, and Frama-C’s
documentation is only available in PDF format. Dafny’s online
documentation lacks a persistent table of contents, unlike
popular tools like Jesﬂ and Pytes 4) Expand the themes
covered in the documentation based on the gaps identified
in our analysis; and 5) Promote VA languages in mandatory
courses, as these languages often appear only in optional
courses, unlike testing, which is more frequently taught.

The open-ended responses complemented these results with
additional, user-driven suggestions not previously captured. In
this subsection, we present both the quantitative results and the
qualitative themes that emerged from participants’ feedback.
Closed-ended Questions. The first improvement addresses the
inclusion of user-readable counter-examples that could allow
users to “debug” the proofs. Most participants (83.9%) agreed

%https://jestjs.io/docs/getting-started| [last access 16th July 2024]
Whttps://docs.pytest.org/en/8.2.x/contents.html [last access 16th July 2024]

on its importance. The suggestion to improve tutorials with
common projects was also well-received by the majority of
participants (64.5%). Improving documentation search mech-
anisms saw a notable divide, with beginners (66.7%) placing
more emphasis on this improvement than experienced devel-
opers (15.4%), and this difference was statistically significant
(p = 0.02822). Expanding documentation themes received
mixed responses, with 41.9% considering it very important.
Finally, including VA languages in undergraduate programs
was considered highly impactful by most participants (50.1%).

Open-ended Questions. We identified 13 categories of im-
provement for VA languages (see Table [V). The most fre-
quently mentioned area was improvements in documentation
and learning materials, suggested by five participants. These
requests included better tutorials, guides, and documentation to
assist both newcomers and experienced developers in using VA
languages effectively. For example, one beginner developer,
P28, noted the need for “more documentation on coming
up with invariants.” Four participants mentioned improved
usability, and three better education. When facing errors,
two beginners and one experienced developer mentioned that
better debugging would help them understand why the veri-
fication fails. P23 mentioned directly that “To be really useful
in practice, a verification-aware language needs to be familiar,
easy to write proofs in, predictable in terms of what can
be verified, well-integrated with common tools, interoperable
with other languages, and able to generate efficient code.”
(P23). This aligns with the broader theme of integration with
mainstream languages, mentioned by four participants.
Another suggestion by two participants is related to
reusable blocks, P19 proposed that tools should “provide
more automation to help ‘easy tasks’, so the program-
mer/prover can focus on complex tasks”, and P26, mentioned
directly they would like to see “reusable bricks for com-
mon verification patterns. Three participants advocated for
increased investment in verification tools, suggesting that
funding and institutional support are necessary for widespread
adoption. While the majority of participants maintained a
positive outlook, skepticism regarding practical adoption was
expressed by two participants. For instance, P13 remarked,
“verification is expensive, and tends not to produce immediate
value - something which corporate doesn’t like very much.”.

RQ3: Our findings point to four key improvements for
addressing challenges in VA languages: better debug-
ging tools; richer educational resources like tutorials
and improved documentation; greater automation of
routine verification tasks; and tighter integration with
mainstream development tools.

VI. RELATED WORK

To the best of our knowledge, this is the first work to
address challenges faced by developers using VA languages.
In this section, we focus on related work on analysis and

https://jestjs.io/docs/getting-started
https://docs.pytest.org/en/8.2.x/contents.html

topic modelling of developer discussions, and on studies on
challenges faced when using different programming languages.

Developer Discussion Analysis and Topic Modelling. Prior
studies have applied topic modelling methodologies to analyse
developer discussions on platforms like Stack Overflow and
GitHub, focusing on areas different from VA languages [9].
Barua et al. [7] analysed posts from a Stack Overflow data
dump (available since 2014 on the Internet Archive) to
understand the main general discussion topics on the plat-
form. Bagherzadeh and Khatchadourian [3|] used the official
Stack Overflow data dump to study the topics of questions
specifically about big data. Han et al. [25] studied what
issues deep learning framework practitioners discuss, gathering
data from Stack Overflow (official data dumps) and GitHub
(official API). Abdellatif et al. [1]] used the official Stack
Overflow data dump as the dataset to identify the topics
chatbot developers were asking about. They analysed heuris-
tics to discover relevant tags, notably using only post titles
for training data, claiming it was representative and reduced
noise. Openja et al. [38]] analysed Stack Overflow questions
to understand topics discussed around Release Engineering,
using the SOTorrent dataset created by Baltes et al. [4]. They
performed topic extraction using significance and relevance
heuristics for tags. El aoun et al. [[17] investigated challenges
in quantum software engineering using data gathered from
GitHub and the Stack Exchange Data Explorer (for Stack
Overflow). Al Alamin et al. [2] conducted an empirical study
of developer discussions on low-code software development
challenges. Peruma et al. [41]] used the SOTorrent dataset to
study the topics around Software Refactoring being asked by
developers. They filtered posts to ensure relevance. These stud-
ies collectively demonstrate a well-established methodology
for using topic modelling, primarily on online forum data, to
explore and understand developer discussions across various
software engineering areas. Our work builds on these previous
studies used to analyse the challenges of different areas and
applies them to the specific context of VA languages.

Programming Language Challenges. Other studies have
examined the challenges developers face when using pro-
gramming languages, suggesting that even experienced de-
velopers struggle to learn new programming languages [40].
Ko et al. [31]] identified six learning barriers in program-
ming systems, which include understanding, design, use, and
information barriers. These barriers align closely with the
challenges reported by VA language users in our study, such
as difficulty interpreting tool feedback and expressing proof
strategies. Other studies focused on particular languages. For
instance, Zhu et al. [53]] focused on Rust, which uses compile-
time checks to ensure memory safety through mechanisms
like ownership and lifetimes. They analyzed 15,000 Stack
Overflow posts and surveyed 101 Rust developers to find that
Rust safety features impose a steep learning curve and that
compiler messages often lack actionable information. This is
in line with other work that identified onboarding and usability
issues as barriers to the adoption of languages [22], [29].

Chakraborty et al. [10] examined the support ecosystem for
newer languages such as Go, Swift, and Rust by analyzing
both Stack Overflow and GitHub data. They identified gaps in
documentation, which often drove developers to rely on com-
munity Q&A sites. Finally, Christakis and Bird [11] studied
developer expectations regarding program analysis tools by
surveying engineers at Microsoft. They found that high false-
positive rates, poor tool integration, and unclear feedback were
the main reasons developers rejected static analysis tools in
practice. These findings echo the feedback-related problems
reported by VA language users in our study and suggest that
if tools fail to align with developers’ workflows or generate
opaque error messages, they are unlikely to be adopted.

VII. CONCLUSION

This work analyzes the challenges developers face with VA
languages, incorporating feedback from both beginners and
experienced users. We trained an ML model on 1,420 ques-
tions, with 145 analyzed post-clustering. From this, 24 distinct
challenges were identified and rated by 31 study participants
Additionally, five improvement suggestions were evaluated,
and 12 more were uncovered via open-ended responses.

This work can pave the way for future investigations of
challenges and improvements, while also offering valuable
insights to guide the design of new VA languages or the
enhancement of existing ones to support broader adoption.
Threats to Validity. For ropic modeling, using question bodies
provides more context but also introduces noise from off-topic
discussions, error messages, and troubleshooting attempts,
which may obscure the actual challenges. We mitigated this
by reviewing both topic keywords and question bodies during
classification. Additionally, Stack Overflow may lack sufficient
coverage for some tools, limiting the generalizability of our
results. Our mapping between languages and questions may
also have missed relevant posts, reducing completeness. In the
survey, the number of participants limited the ability to detect
differences between experience levels. Also, the translation
of challenges into affirmations may have lost important con-
text, affecting participants’ understanding. We mitigated this
by providing open-ended questions where participants could
provide their opinions.

Future Work. While this work answers the main research
questions, several areas can be expanded. Future work includes
expanding the dataset with further sources and carry out a
large-size user study. In addition, newly identified challenges
should be ranked based on relevance, in order to direct
development towards support that can have a greater impact.

REFERENCES

[1] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem,
and Emad Shihab. Challenges in Chatbot Development: A Study of
Stack Overflow Posts. In MSR’20, pages 174-185. ACM, 2020.

[2] Md Abdullah Al Alamin, Sanjay Malakar, Gias Uddin, Sadia Afroz,
Tameem Bin Haider, and Anindya Igbal. An empirical study of
developer discussions on low-code software development challenges.
In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pages 46-57, 2021.

[3

[4

=

[5]
[6]

[7

—

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Mehdi Bagherzadeh and Raffi Khatchadourian. Going big: a large-scale
study on what big data developers ask. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, pages 432-442, New York, NY, USA, August 2019. ACM.
Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl.
Sotorrent: reconstructing and analyzing the evolution of stack overflow
posts. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 18, page 319-330, New York, NY, USA,
2018. Association for Computing Machinery.

John Barnes. SPARK: The Proven Approach to High Integrity Software.
Altran Praxis, 2012.

Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The spec#
programming system: An overview. In International Workshop on
Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, pages 49-69. Springer, 2004.

Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. What are
developers talking about? An analysis of topics and trends in Stack
Overflow. Empirical Software Engineering, 19(3):619-654, June 2014.
David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research, 3:993-1022, 2003.
Carolina Carreira, Nuno Saavedra, Alexandra Mendes, and Jodao F
Ferreira. From “Worse is Better” to better: Lessons from a mixed
methods study of ansible’s challenges. arXiv preprint arXiv:2504.08678,
2025.

Partha Chakraborty, Rifat Shahriyar, Anindya Igbal, and Gias Uddin.
How do developers discuss and support new programming languages in
technical Q&A site? An empirical study of Go, Swift, and Rust in Stack
Overflow. Information and Software Technology, 137:106603, 2021.
Maria Christakis and Christian Bird. What developers want and need
from program analysis: an empirical study. In 3/st IEEE/ACM Int. Conf.
on Automated Software Engineering, pages 332-343, 2016.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
Michat Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Theorem Proving
in Higher Order Logics: 22nd International Conference, TPHOLs 2009,
August 17-20, 2009. Proceedings 22, pages 23—42. Springer, 2009.
James C Corbett, Matthew B Dwyer, John Hatcliff, Shawn Laubach,
Corina S Pasdreanu, Robby, and Hongjun Zheng. Bandera: Extracting
finite-state models from java source code. In Proceedings of the 22nd
international conference on Software engineering, pages 439-448, 2000.
Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-c: A software analysis
perspective. pages 233-247, 2012.

Adel Djoudi, Martin Hana, and Nikolai Kosmatov. Formal Verification
of a JavaCard Virtual Machine with Frama-C. In Formal Methods, pages
427-444. Springer International Publishing, 2021.

Frank Dordowsky. An experimental Study using ACSL and Frama-
C to formulate and verify Low-Level Requirements from a DO-178C
compliant Avionics Project. Electronic Proceedings in Theoretical
Computer Science, 187:28—41, 2015.

Mohamed Raed El aoun, Heng Li, Foutse Khomh, and Moses Openja.
Understanding quantum software engineering challenges an empirical
study on stack exchange forums and github issues. In 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
pages 343-354, 2021.

Escher Technologies. Escher c verifier (ecv). https://web.archive.org/

web/20250115124219/https://eschertech.com/products/ecv.php, 2017.
Accessed via Internet Archive on January 15, 2025.
Christiane Fellbaum. Wordnet: An electronic lexical database. MIT

Press, 2:678-686, 1998.

Jean-Christophe Fillidtre and Andrei Paskevich. Why3—where pro-
grams meet provers. In Programming Languages and Systems: 22nd
European Symposium on Programming 2013, pages 125-128, 2013.
David Fullerton. Stack Exchange Creative Commons data now hosted
by the Internet Archive, 2014. [Online]; accessed 03 June 2024.
Kelsey R Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and
Michelle L Mazurek. Benefits and drawbacks of adopting a secure
programming language: Rust as a case study. In Seventeenth Symposium
on Usable Privacy and Security (SOUPS 2021), pages 597-616, 2021.
Dilian Gurov, Christian Lidstrom, Mattias Nyberg, and Jonas Westman.
Deductive Functional Verification of Safety-Critical Embedded C-Code:
An Experience Report. In Laure Petrucci, Cristina Seceleanu, and Ana

[24]

[25]

[26]

(271

(28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]
(36]

(371

(38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

Cavalcanti, editors, Critical Systems: Formal Methods and Automated
Verification, pages 3—18. Springer International Publishing, 2017.
Matthias Giidemann. Online Teaching of Verification of C Programs in
Applied Computer Science. In Jodo F. Ferreira, Alexandra Mendes, and
Claudio Menghi, editors, Formal Methods Teaching, 2021.

Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, and Xin
Xia. What do Programmers Discuss about Deep Learning Frameworks.
Empirical Software Engineering, 25(4):2694-2747, July 2020.

Klaus Havelund and Thomas Pressburger. Model checking java pro-
grams using java pathfinder. International Journal on Software Tools
for Technology Transfer, 2:366-381, 2000.

Reiner Hihnle and Marieke Huisman. Deductive software verification:
From pen-and-paper proofs to industrial tools. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 10000:345 — 373, 2019.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. Verifast: A powerful, sound, predictable,
fast verifier for ¢ and java. In NASA formal methods symposium, pages
41-55. Springer, 2011.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. Why don’t software developers use static analysis tools
to find bugs? 1In 2013 35th International Conference on Software
Engineering (ICSE), pages 672-681. IEEE, 2013.

Alexander Kniippel, Thomas Thiim, Carsten Pardylla, and Ina Schaefer.
Experience Report on Formally Verifying Parts of OpenJDK’s API with
KeY. Electronic Proceedings in Theoretical Computer Science, 284:53—
70, 2018. Publisher: Open Publishing Association.

Amy J Ko, Brad A Myers, and Htet Htet Aung. Six learning barriers
in end-user programming systems. In 2004 IEEE Symposium on Visual
Languages-Human Centric Computing, pages 199-206. IEEE, 2004.
Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee
Cho, Hayley LeBlanc, Pranav Srinivasan, Reto Achermann, Tej Chajed,
Chris Hawblitzel, Jon Howell, Jay Lorch, Oded Padon, and Bryan Parno.
Verus: A practical foundation for systems verification. In Symposium
on Operating Systems Principles, pages 438-454, November 2024.
Gary T Leavens, Albert L Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. ACM
SIGSOFT Software Engineering Notes, 31(3):1-38, 2006.

K Rustan M Leino. Dafny: An automatic program verifier for functional
correctness. In International conference on logic for programming
artificial intelligence and reasoning, pages 348-370. Springer, 2010.
K. Rustan M. Leino, David R. Cok, and Dafny contributors. Dafny
Reference Manual, 2024. [Online]; accessed 06th January 2025.
Bertrand Meyer. The Eiffel programming language. http://www. eiffel.
com, 1992.

Mattias Nyberg, Dilian Gurov, Christian Lidstrom, Andreas Rasmus-
son, and Jonas Westman. Formal verification in automotive industry:
Enablers and obstacles. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 11247 LNCS:139 — 158, 2018.

Moses Openja, Bram Adams, and Foutse Khomh. Analysis of modern
release engineering topics : — a large-scale study using stackoverflow —.
In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 104-114, 2020.

David L. Parnas, A. John van Schouwen, and Shu Po Kwan. Evaluation
of safety-critical software. Commun. ACM, 33(6):636-648, 1990.
David J Pearce and Lindsay Groves. Whiley: a platform for research in
software verification. In SLE’13, pages 238-248. Springer, 2013.
Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Chris-
tian D. Newman, Mohamed Wiem MkKaouer, and Ali Ouni. How do
I refactor this? An empirical study on refactoring trends and topics in
Stack Overflow. Empirical Software Engineering, 27(1), January 2022.
Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130-
137, 1980.

Michael Roder, Andreas Both, and Alexander Hinneburg. Exploring
the Space of Topic Coherence Measures. In Proc. of WSDM’15, pages
399-408. ACM, 2015.

Marc Schoolderman, Sjaak Smetsers, and Marko Van Eekelen. Is
Deductive Program Verification Mature Enough to be Taught to Software
Engineers? In Proceedings of the 8th Computer Science Education
Research Conference, pages 50-57. ACM, 2019.

Yuvaraj Selvaraj, Wolfgang Ahrendt, and Martin Fabian. Verification
of Decision Making Software in an Autonomous Vehicle: An Industrial

https://web.archive.org/web/20250115124219/https://eschertech.com/products/ecv.php
https://web.archive.org/web/20250115124219/https://eschertech.com/products/ecv.php

[40]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

Case Study. In Formal Methods for Industrial Critical Systems: 24th
International Conference, pages 143—159. Springer-Verlag, 2019.
Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. Here we
go again: Why is it difficult for developers to learn another programming
language? In Proc. of ICSE’20, pages 691-701, 2020.

Julia Silge and David Robinson. Text Mining with R: A Tidy Approach,
2024. [Online]; accessed 30 May 2024.

Donna Spencer. Card Sorting: Designing Usable Categories. Rosenfeld
Media, 2009.

Vassil Todorov, Frederic Boulanger, and Safouan Taha. Formal verifi-
cation of automotive embedded software. In 6¢th Conference on Formal
Methods in Software Engineering (FormaliSE ’18), page 84 — 87, 2018.
Ike Vayansky and Sathish AP Kumar. A review of topic modeling
methods. Information Systems, 94:101582, 2020.

Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb.
mbeddr: an extensible c-based programming language and ide for
embedded systems. In Proc. of SPLASH’12, pages 121-140, 2012.
Neil White, Stuart Matthews, and Roderick Chapman. Formal verifi-
cation: Will the seedling ever flower? Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
375(2104), 2017.

Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song.
Learning and programming challenges of Rust: A mixed-methods study.
In Proc. of ICSE’22, pages 1269-1281, 2022.

	Introduction
	Study Design
	Verification-Aware Languages Considered
	Literature Review
	Stack Overflow Q&A Study
	User Study
	Survey Design
	Recruitment
	Quantitative Analysis
	Qualitative Analysis

	What challenges do Verification-Aware language practitioners face? (RQ1)
	Findings from Literature Review
	Findings from Stack Overflow Q&A Study
	Findings from User Study

	What is the context of the first contact with Verification-Aware languages? (RQ2)
	What improvements can be made to existing tools to overcome those challenges? (RQ3)
	Related Work
	Conclusion
	References

