
Contract Usage and Evolution in Android Mobile Applications
(Supplementary Material∗)

DAVID R. FERREIRA, Faculty of Engineering, University of Porto, Portugal

ALEXANDRA MENDES, Faculty of Engineering, University of Porto, Portugal

JOÃO F. FERREIRA, INESC-ID & IST, University of Lisbon, Portugal

CAROLINA CARREIRA, Carnegie Mellon University, INESC-ID & IST, University of Lisbon, Portugal

This document contains additional material that is not included in the submission “Contract Usage and Evolution in Android Mobile

Applications” (Last Revision: 29 April 2025).

Contents

Abstract 1

Contents 1

A Information about Available Data / Artifacts 2

B Dataset: GitHub Statistics 2

C Contracts in Android Applications 3

C.1 CREs 3

C.2 APIs 3

D Algorithm for diff records of the contracts 4

E Liskov Substitution Principle Study: Example 6

F Finding 4: Top 100 Applications 7

G Table 6 extended 8

H List of Conditional Runtime Exceptions analyzed 8

I List of API’s methods analyzed 9

J List of Annotations analyzed 10

K User Study 13

Authors’ addresses: David R. Ferreira, Faculty of Engineering, University of Porto, Porto, Portugal, david.regatia@gmail.com; Alexandra Mendes, Faculty

of Engineering, University of Porto, Porto, Portugal, alexandra@archimendes.com; João F. Ferreira, INESC-ID & IST, University of Lisbon, Lisbon, Portugal,

joao@joaoff.com; Carolina Carreira, Carnegie Mellon University, INESC-ID & IST, University of Lisbon, Lisbon, Portugal, carolinacarreira@cmu.edu.

1

2 David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira

SUPPLEMENTARY MATERIAL

The following appendices contain additional material that complements the main body of the paper.

A INFORMATION ABOUT AVAILABLE DATA / ARTIFACTS

All the code and datasets are publicly available at https://figshare.com/s/d6eb7e5522bb535dc81a

Alternatively, the following links can also be used:

• The code is available at: https://anonymous.4open.science/r/contracts-android-3E30

• The dataset is available at: https://drive.google.com/file/d/1X8Qy3yamzjIZyc_h5AtNW84-91qFTiV4/view?usp=

share_link

B DATASET: GITHUB STATISTICS

Figure 1 shows the distribution of GitHub-related metrics — including the number of contributors, stars, watchers, and

forks — for the projects that form the evaluated dataset. While the number of contributors describes the project’s team

and its size, the number of stars, watchers, and forks help to assess each project’s popularity and relevance among other

developers. For reference, the maximum outlier for each metric is 1682 for watchers, 33,689 for stars, 11,633 for forks,

and 398 for contributors. Again, this diversity ensures the quality of the dataset and reduces potential bias.

(a) Number of contributors. (b) Number of stars.

(c) Number of watchers. (d) Number of forks.

Fig. 1. The distribution of GitHub repositories-related metrics for the dataset’s projects, without outliers.

https://figshare.com/s/d6eb7e5522bb535dc81a
https://anonymous.4open.science/r/contracts-android-3E30
https://drive.google.com/file/d/1X8Qy3yamzjIZyc_h5AtNW84-91qFTiV4/view?usp=share_link
https://drive.google.com/file/d/1X8Qy3yamzjIZyc_h5AtNW84-91qFTiV4/view?usp=share_link

Last Revision: 29 April 2025 3

C CONTRACTS IN ANDROID APPLICATIONS

C.1 CREs

An exception can be used to signal, at runtime, a contract violation. However, it is important to note that the exception

itself does not represent a contract; it needs to be associated with a previous check — for example, an exception thrown

inside an if-else block — to be considered so. Java and Kotlin offer many exceptions that can be used for this purpose,

such as the IllegalArgumentException. The android.util package offers additional exceptions that we are also interested

in analyzing, such as the case of the AndroidRuntimeException. We are also interested in a particular exception, the

UnsupportedOperationException, which, according to the Java documentation, is thrown to indicate that the requested

operation is not supported. An example of this is the following method proceedWithCheckout, which states that it can

only perform its task when the shoppingCart has at least one item:

public void proceedWithCheckout(List <Item > shoppingCart) {

if (shoppingCart.isEmpty ()) {

throw new IllegalArgumentException ();

}

...

}

C.2 APIs

The methods provided by the Validate class are simply wrapping exceptions that we have already considered in the

CREs. Still, as we can see in the following Kotlin code snippet, this API contributes to cleaner code compared to a raw

CRE-based solution since we can specify the contracts in a single line and with meaningful wording. In particular, we

specify a precondition stating that the items list is not empty:

fun addToShoppingCart(items: List <Item >): List <Item > {

Validate.notEmpty(items)

shoppingCart.addAll(items)

return shoppingCart

}

4 David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira

D ALGORITHM FOR DIFF RECORDS OF THE CONTRACTS

The algorithm to create diff records is illustrated in Figure 2. The algorithm to create diff records consists of walking

through each contract identified in the usage study (steps 1 and 2). We create a unique index for each contract in

the loop to ensure we are not double-counting occurrences (steps 3 and 4). If the contract was not analyzed yet, we

determine whether the contract belongs to the first version of the application (step 5). If this is the case, we create a diff

record by retrieving all the contracts in both versions of this contract’s method (steps 5.a and 5.b). Otherwise, if the

contract belongs to the last version of the application (step 6), we determine whether the associated method already

existed in the first version (step 7). If the method existed and its first version did not contain contracts, we create a diff

record with only the last version’s contracts (steps 8 and 9). If the first version contains contracts, we do not create a

diff record to not double-count contracts since they will be reported by step 5.b. Ultimately, the program outputs the diff

records created for each program-version method (step 10).

Last Revision: 29 April 2025 5

Start

Load contracts from the JSON files
produced by the usage study

Loop
through each

contract

Creates key from program name,
version, and method path

Was key
already

analyzed?

Is contract
from first
version?

Is contract
from second

version?

Does method
exist in first

version?

Does first
version have
contracts?

Creates diff record with contracts
from last version (and empty list for

first version)

Gets all contracts in the first and last
version of a program's method

Creates diff record with contracts in
the method's both versions

Creates diff record with contracts in
the method's both versions

End

1

2

3

4

5

6

7

8

9

5.a

5.b

10

False

True

False

True

True

False

True

False

False

All contracts
analyzed

Still contracts to analyze

True

Fig. 2. An overview of the algorithm to create diff records of the contracts found in two versions of a method.

6 David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira

E LISKOV SUBSTITUTION PRINCIPLE STUDY: EXAMPLE
Listing 1 shows the TagEntry class that extends the EntryItem class. It also overrides the setName method inherited

from its parent class. Note that while the superclass implementation contains no contract, the subclass implementation

adds a CRE precondition throwing an IllegalStateException when the id property does not end with the name parameter.

Therefore, we are in the presence of a precondition strengthening in the context of inheritance, i.e., a violation of the

Liskov Substitution Principle.

1 public class EntryItem {

2 public void setName(String name) {

3 if (name != null) {

4 this.name = name;

5 this.normalizedName = StringNormalizer.normalizeWithResult(this.name , false);

6 } else {

7 this.name = "null";

8 this.normalizedName = null;

9 }

10 }

11 }

12

13 public class TagEntry extends EntryItem {

14 public final String id;

15

16 @Override

17 public void setName(String name) {

18 if (name != null) {

19 if (!id.endsWith(name))

20 throw new IllegalStateException("The display name and tag name need to be equal.");

21 super.setName(name);

22 } else {

23 super.setName(id.substring(SCHEME.length ()));

24 }

25 }

26 }

Listing 1. A Java class that overrides the setName method from its parent class. This is an example of pre-condition
strengthening in the context of inheritance, i.e., a violation of the Liskov Substitution Principle.

Last Revision: 29 April 2025 7

F FINDING 4: TOP 100 APPLICATIONS

Regarding Finding 4, we have also looked into whether there was any relation between the number of contracts in the

last version and any of the GitHub metrics from Figure 1. However, no meaningful correlation was found.

Pre-conditions Post-conditions Class Invariants
0

200

400

600

800

Fr
eq

ue
nc

y

Java

Pre-conditions Post-conditions Class Invariants

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Kotlin

Fig. 3. Comparison of the distribution of the identified contract types in the top 100 applications with higher usage per
type for Java and Kotlin.

8 David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira

G TABLE 6 EXTENDED

In this section, we present a version of Table 6 (in the submitted paper) that also includes the number of applications

(last two columns).

Table 1. Number of contracts found in the dataset by construct and category.

contracts (all ver.) contracts (2nd ver.) applications

Construct Category Java Kotlin Java Kotlin Java Kotlin

cond. runtime exc. CRE 25,565 3,232 14,887 2,071 779 285

unsupp. op. exc. CRE 511 142 308 116 97 27

java assert assertion 3,525 - 2,217 - 325 -

kotlin assert assertion - 3,868 - 2,370 - 234

guava precond. API 1,798 10 1,121 9 22 4

commons validate API 148 0 3 0 1 0

spring assert API 1 0 1 0 1 0

JSR303, JSR349 annotation 0 0 0 0 0 0

JSR305 annotation 4,195 20 2,133 13 40 4

findbugs annotation 0 0 0 0 0 0

jetbrains annotation 2,310 138 1,596 98 115 20

android annotation 12,003 5,704 7,013 3,414 910 464

androidx annotation 139,933 20,593 86,212 13,811 599 401

kotlin contracts others - 1 - 1 - 1

H LIST OF CONDITIONAL RUNTIME EXCEPTIONS ANALYZED

Table 2. List of exceptions analyzed in the CRE category.

CREs Constructs

AndroidRuntimeException MissingResourceException

ArithmeticException NegativeArraySizeException

ArrayStoreException NoSuchElementException

ArrayStoreException NullPointerException

BufferOverflowException ParcelFormatException

BufferUnderflowException ParseException

ClassCastException ProviderException

CompletionException ProviderNotFoundException

ConcurrentModificationException RejectedExecutionException

DOMException SQLException

DateTimeException SecurityException

EmptyStackException TypeNotPresentException

EnumConstantNotPresentException UncheckedIOException

FileSystemAlreadyExistsException UndeclaredThrowableException

FileSystemNotFoundException UnsupportedOperationException

IllegalArgumentException WrongMethodTypeException

IllegalMonitorStateException AcceptPendingException

Last Revision: 29 April 2025 9

IllegalStateException AccessControlException

IncompleteAnnotationException AlreadyBoundException

IndexOutOfBoundsException AlreadyConnectedException

LSException ArrayIndexOutOfBoundsException

MalformedParameterizedTypeException BadParceableException

MalformedParametersException CancellationException

UnsupportedAddressTypeException UnsupportedCharsetException

WritePendingException ZoneRulesException

CancelledKeyException PatternSyntaxException

ClosedDirectoryStreamException StringIndexOutOfBoundsException

ClosedFileSystemException ReadOnlyBufferException

ClosedFileSystemException ReadOnlyFileSystemException

ClosedSelectorException ReadPendingException

ClosedWatchServiceException ShutdownChannelGroupException

ConnectionPendingException StringIndexOutOfBoundsException

NonReadableChannelException UnknownFormatConversionException

NonWritableChannelException UnknownFormatFlagsException

NotYetBoundException UnresolvedAddressException

NotYetConnectedException UnsupportedTemporalTypeException

NumberFormatException OverlappingFileLockException

I LIST OF API’S METHODS ANALYZED

Table 3. List of the methods analyzed from each API.

Annotations analyzed

Apache lang2 Validate

allElementsOfType()

isTrue()

noNullElements()

notEmpty()

notNull()

Apache lang3 Validate

allElementsOfType()

exclusiveBetween()

inclusiveBetween()

assignableFrom()

10 David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira

isInstanceOf()

matchesPattern()

notBlank()

validIndex()

validState()

Guava Preconditions

checkArgument()

checkState()

checkElementIndex()

checkPositionIndex()

checkNotNull()

checkPositionIndexes()

Spring Assert

doesNotContain()

hasLength()

hasText()

notEmpty()

noNullElements()

isInstanceOf()

isAssignable()

state()

isNull()

isTrue()

notNull()

J LIST OF ANNOTATIONS ANALYZED

Table 4. List of annotations analyzed per package.

Annotations analyzed

JSR305

@CheckForNull @CheckForSigned

@MatchesPattern @Nonnegative

@Nonnull @Nullable

@OverridingMethodsMustInvokeSupper @ParametersAreNonnullByDefault

Last Revision: 29 April 2025 11

@RegEx @Signed

@Syntax @Syntax

@Tainted @Untainted

@WillClose @WillCloseWhenClosed

@WillNotClose @Guardedby

@Immutable @NotThreadSafe

@ThreadSafe

JSR303, JSR349

@Null @DecimalMin

@NotNull @Size

@AssertTrue @Digits

@AssertFalse @Past

@Min @Future

@Max @Pattern

@DecimalMax

JetBrain

@Contract @NotNull

@Nullable @PropertyKey

@TestOnly

IntelliJ

@BoxLayoutAxis @CalendarMonth

@CursorType @FlowLayoutAlignment

@FontStyle @HorizontalAlignment

@InputEventMask @ListSelectionMode

@PatternFlags @TabLayoutPolicy

@AdjustableOrientation @Flow

@Identifier @TabPlacement

@TitledBorderJustification @TitledBorderTitlePosition

@Language @MagicConstant

@Pattern @PrintFormat

@PrintFormat @RexExp

@Subst

FindBugs

@CheckForNull @NonNull

@Nullable @PossiblyNull

12 David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira

@FontStyle @HorizontalAlignment

@UnkownNullness @CreateObligation

@DischargesObligation @CleanupObligation

Android @AndroidSupressLint @AndroidTargetApi

Androidx

@AnimatorRes @AnimRes

@AnyRes @AnyThread

@AnyThread @ArrayRes

@AttrRes @BinderThread

@BinderThread @BoolRes

@CallSuper @CheckResult

@ChecksSdkIntAtLeast @ColorInt

@ColorLong @ColorRes

@ContentView @DimenRes

@Dimension @NotInline

@DrawableRes @FloatRange

@FloatRange @FontRes

@FontRes @FractionRes

@FractionRes @GuardedBy

@GuardedBy @HalfFloat

@IdRes @InspectableProperty

@IntDef @IntegerRes

@InterpolatorRes @IntRange

@Keep @LayoutRes

@LongDef @MainThread

@MainThread @MenuRes

@NavigationRes @NonNull

@Nullable @PluralsRec

@Px @RawRes

@RequiresApi @RequiresFeature

@RequiresPermission @RestrictTo

@Size @StringDef

@StringRes @StyleableRes

@StyleRes @TransitionRes

@UiThread @VisibleForTesting

@WorkerThread @XmlRes

Last Revision: 29 April 2025 13

K USER STUDY

In the next page we present the survey used in the user study.

 Page 1 of 10

Design by Contract Survey

Start of Block: Technical Background

experience_software How many years of experience do you have in software development?

o I don’t have any experience in software development (6)

o <1 year (1)

o 1-3 years (2)

o 4-6 years (3)

o 7-10 years (4)

o >10 years (5)

experience_android How many years of experience do you have in Android Software
development?

o I don’t have any experience in Android software development (6)

o <1 year (1)

o 1-3 years (2)

o 4-6 years (3)

o 7-10 years (4)

o >10 years (5)

End of Block: Technical Background
Start of Block: Defining Contract

 Page 2 of 10

Q8 Design by Contract is a technique in which software systems are seen as components that
interact amongst themselves based on precisely defined specifications of client-supplier
obligations (contracts). Contracts are specifications of an agreement between the client and the
supplier of a component, where the supplier expects that certain conditions are met by the client
before using the component (preconditions), maintains certain properties from entry to the
component to exit (invariants), and guarantees that certain properties are met upon exit
(postconditions). These contracts can be written as assertions directly into the code. For
example, a way of enforcing a precondition in Java using exceptions might be: public void
proceedWithCheckout (List < Item> shoppingCart) { if (shoppingCart.isEmpty ()) { throw new
IllegalArgumentException () ; } ... } Other examples include annotations such as @NonNull ,
which can be used to express preconditions. In Java and Kotlin, the assert keyword can be
used to enforce the validity of a condition (for example, an invariant). APIs such as
org.apache.commons.lang.Validate.* or com.google.common.base.Preconditions.* are also
used to denote contracts. Finally, Kotlin offers features such as @ExperimentalContracts that
allow the developer to state a method’s behavior to the compiler explicitly.

confidence How confident are you that you understand the definition of contract?

o Very confident (1)

o Somewhat Confident (2)

o Not Confident at all (3)

frequency_of_use How often do you use contracts?

o Never (1)

o Sometimes (2)

o Every time I code (3)

o I'm not sure (4) __

End of Block: Defining Contract
Start of Block: Follow-up-if-never

 Page 3 of 10

reason-for-not-using Why do you not use contracts?

__

__

__

__

__

End of Block: Follow-up-if-never
Start of Block: Follow-up-if-sometimes

language-contracts Which programming languages do you primarily use to implement Design
by Contract principles in your projects? Please select all that apply

▢ Eiffel (native support for DbC) (1)

▢ Ada (SPARK – with DbC features) (4)

▢ Java (using JML or contracts libraries such as CoFoJa) (5)

▢ C# (using Code Contracts) (6)

▢ Python (using assertions or contracts libraries such as PyContracts) (7)

▢ C++ (using assertions or contracts libraries) (8)

▢ Ruby (using contracts gem) (9)

▢ Dafny (designed with built-in support for formal verification and DbC) (11)

▢ Other (please specify) (10)
__

 Page 4 of 10

reason-for-using Why do you use contracts?

__

challenges What challenges, if any, did you encounter when using contracts?

__

End of Block: Follow-up-if-sometimes
Start of Block: user-recomendations

user-recomend1 Please suggest some recommendations that can help improve the adoption of
contracts.

__

__

__

__

__

End of Block: user-recomendations
Start of Block: our-recommendations

 Page 5 of 10

recommendations-rank Please rank these recommendations:

 Very Important
(1)

Somewhat
Important (2)

Not Important at
All (3) Not sure (4)

Extend Java and
Kotlin standard
libraries with
specialized

constructs to
specify contracts
and with proper

official
documentation

(1)

o o o o

Have libraries
that standardize

contract
specifications in
Java and Kotlin

(2)

o o o o
Integrate into
IDEs contract

suggestion
features

supported by
tools for by tools

that
automatically

generate
assertions and
contracts (3)

o o o o

IDE and
continuous
integration
plugins to

automatically
detect contract
violations (4)

o o o o

user-recomend2 After reading these recommendations, what other recommendations can you
think of?

__

 Page 6 of 10

End of Block: our-recommendations
Start of Block: demographic

Q198 In the last part of the survey, we want to learn more about your background. You will also
have an opportunity to give us feedback at the end.

age How old are you?

o Under 18 (1)

o 18-24 years old (2)

o 25-34 years old (3)

o 35-44 years old (4)

o 45-54 years old (5)

o 55-64 years old (6)

o 65+ years old (7)

gender How do you describe yourself?

o Male (1)

o Female (2)

o Non-binary / third gender (3)

o Prefer to self-describe (4)
__

o Prefer not to say (5)

 Page 7 of 10

education What is the highest level of education you have completed?

o Some high school or less (1)

o High school diploma or GED (2)

o Some college, but no degree (3)

o Associates or technical degree (4)

o Bachelor’s degree (5)

o Graduate or professional degree (MA, MS, MBA, PhD, JD, MD, DDS etc.) (6)

o Prefer not to say (7)

race Choose one or more races that you consider yourself to be

▢ White or Caucasian (1)

▢ Black or African American (2)

▢ American Indian/Native American or Alaska Native (3)

▢ Asian (4)

▢ Native Hawaiian or Other Pacific Islander (5)

▢ Other (6)

▢ Prefer not to say (7)

 Page 8 of 10

programming_geral Which of the following programming languages do you regularly use for
your projects? Please select all that apply.

▢ C (1)

▢ C++ (4)

▢ Java (5)

▢ Python (6)

▢ JavaScript (7)

▢ TypeScript (8)

▢ Ruby (9)

▢ PHP (10)

▢ Swift (11)

▢ Kotlin (12)

▢ Go (13)

▢ Rust (14)

▢ Dafny (16)

▢ Other (please specify) (15)
__

 Page 9 of 10

Computing-M Are you employed in a computing field (e.g., IT, software engineer, programmer)?

o Yes (1)

o No (2)

o No, but I have been in the past (3)

o I’m not sure/Other (4) __

ComputingEd-M Do you have formal education in a computing field (e.g., degree in computer
science or computer engineering)?

o Yes (1)

o No (2)

o I'm not sure/Other (4) __

Page Break

 Page 10 of 10

other_feedback Do you have any other feedback for us? Feel free to share your thoughts about
anything, from our survey to Design by Contract.

__

__

__

__

__

End of Block: demographic

	Abstract
	Contents
	A Information about Available Data / Artifacts
	B Dataset: GitHub Statistics
	C Contracts in Android Applications
	C.1 CREs
	C.2 APIs

	D Algorithm for diff records of the contracts
	E Liskov Substitution Principle Study: Example
	F Finding 4: Top 100 Applications
	G Table 6 extended
	H List of Conditional Runtime Exceptions analyzed
	I List of API's methods analyzed
	J List of Annotations analyzed
	K User Study

