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Abstract. Students in computing education increasingly use large lan-
guage models (LLMs) such as ChatGPT. Yet, the role of LLMs in sup-
porting cognitively demanding tasks, like deductive program verification,
remains poorly understood. This paper investigates how students inter-
act with an LLM when solving formal verification exercises in Dafny, a
language that supports functional correctness by allowing programmers
to write formal specifications and automatically verifying that the im-
plementation satisfies the specification. We conducted a mixed-methods
study with master’s students enrolled in a formal methods course. Each
participant completed two verification problems, one with access to a
custom ChatGPT interface that logged all interactions and the other
without. We identified strategies used by successful students and as-
sessed the level of trust students place in LLMs. Our findings show that
students perform significantly better when using ChatGPT; however,
performance gains are tied to prompt quality. We conclude with practi-
cal recommendations for integrating LLMs into formal methods courses
more effectively, including designing LLM-aware challenges that promote
learning.
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1 Introduction

Large language models (LLMs), such as ChatGPT, are rapidly becoming part
of students’ everyday problem-solving toolkit in programming courses [5]. While
these tools promise to democratize access to support and feedback, their unreg-
ulated use in educational settings raises fundamental questions about learning,
trust, and correctness, especially in domains that demand rigorous reasoning,
such as formal verification.

Formal verification tools like Dafny require users to write correct code, to
formulate precise specifications, and to construct proofs. These tasks demand
a solid understanding of logical invariants (properties that must always hold
true) and tool behavior. This creates a steep learning curve for students [I3],
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particularly those new to formal methods. It is in these cognitively demanding
scenarios that LLMs may be most helpful (or not) as a support mechanism.

Prior work has explored how LLMs support or hinder novice programmers in
writing code [19] or debugging simple scripts [4]. However, much less is known
about how students engage with LLMs during semantically complex tasks like
deductive verification, where correctness requires not only syntactic accuracy
but also logical soundness. To address this gap, we conducted a controlled study
with master’s-level students enrolled in a formal methods course using Dafny.
Students completed verification exercises with and without access to a custom
ChatGPT interface. Through a survey, logs, and artifact analysis, we answer the
following questions:

RQ1. [Performance| Does ChatGPT improve students’ performance in veri-
fication problems?

RQ2. [LLM Interaction]
RQ2.1: How do students interact with ChatGPT when solving deductive
verification problems?
RQ2.2: What strategies do more successful students employ when solving
Dafny problems?

RQ3. [Trust] How do students perceive and trust the responses provided by
the LLM?

To our knowledge, this is the first empirical study of how students use LLMs
to solve deductive verification problems in Dafny. Our main contributions are:

— we show that LLMs significantly improve student performance, particularly
on implementation tasks with Dafny;

— a detailed qualitative analysis of prompting strategies that distinguish more
successful students;

— three actionable recommendations for using LLMs in the classroom.

2 Background and Related Work

Formal Verification and Dafny. Dafny [7] is a verification-aware program-
ming language designed to integrate formal verification into the software devel-
opment workflow seamlessly. It enables developers to specify program behavior
using constructs such as requires, ensures, and assert, which are then au-
tomatically verified by the Dafny tool. This process helps ensure that the code
meets its intended specifications, reducing the risk of defects that might other-
wise go undetected through conventional testing. In industry, Dafny has been
adopted across multiple domains, such as AWS [20] and software verification
competitions [3]. Dafny is also an effective educational tool for introduction
to formal methods, having been used, for example, for programming-intensive
learning with immediate formative feedback via automated assessments [13].
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LLMs and Dafny. Recent work has begun to integrate the capabilities of
LLMs with formal verification workflows. One approach is to generate full code
and specification from a function description in natural language. Clover [22] and
Mirchev et al. [10] used LLMs like ChatGPT to generate code and specifications
from natural language and to detect inconsistencies among code, specs, and doc-
umentation. Similarly, Misu et al. [II] explored different prompting techniques
to improve the base performance of pretrained models. Wu et al. [24] use LLMs
for program repair in Dafny.

While some works focus on code generation, others focus on specification
tasks. Silva et al. [21] explored ChatGPT’s ability to assist with lemma discov-
ery and proof generation in Dafny and, found early difficulties in producing
syntactically correct code. Other tools aim to automate the inference of helper
annotations, such as missing assertions or loop invariants, crucial for verifica-
tion [T2JT5JT4]. For example, Pascoal et al. [14] focused on loop invariant synthe-
sis, with the tool generating correct invariants on the first try in 92% of cases and
within five attempts in 95%, leaving only the most complex examples unsolved.

LLMs in CS Education. The use of LLMs in CS education has mixed out-
comes. Groothuijsen et al. [4] examined a scientific computing (C/Python) course
for engineering students. They found that students used ChatGPT extensively
for tasks like debugging and optimization, but instructors observed declines
in code quality and collaborative programming as students relied heavily on
ChatGPT. Sun et al. [23] study had similar findings, with no significant per-
formance difference between ChatGPT-assisted and self-directed groups. Con-
trasting, Qureshi [I9] ran a controlled lab in a data structures course: one team
used only textbooks, and another could use ChatGPT. The ChatGPT group
solved more test cases (higher scores) but also produced buggy or inconsistent
code. The study concluded that ChatGPT provides a performance advantage
on short programming challenges, but brings trade-offs (inaccuracies) that in-
structors must consider. Survey studies of software engineering students reveal
high adoption but mixed trust. Hanifi et al. [5] surveyed SE undergraduates and
found high usage and some self-taught prompt engineering, yet low overall trust,
with 90% of students reporting LLM hallucinations. Prather et al.[I8J17] found
that stronger students used Al to accelerate progress, while weaker ones became
over-reliant, often mistaking output for understanding. Xue et al. [25] found no
improvement in task outcomes and noted that ChatGPT use often displaced
traditional learning without a clear benefit. Overall, LLMs can aid students, but
over-reliance may hinder learning and widen existing skill gaps.

LLMs in Formal Methods Education. Formal methods are an important
part of computer science curricula [I]. To our knowledge, only two studies have
evaluated LLM in formal methods education. Capozucca et al. [2] examined
ChatGPT’s impact on students learning the B-method. A pretest-posttest exper-
iment showed that access to the Al assistant did not improve the correctness of
B-specifications. In fact, students who relied less on ChatGPT performed better,
with lower trust in the assistant correlating with higher-quality results. Although
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ChatGPT helped surface key concepts, like state variables, it often failed to pro-
duce correct formal expressions. Similarly, Prasad et al. [16] integrated ChatGPT
into a formal-methods course using Alloy/Forge. Over the semester, 64 students
submitted only 293 prompts, mostly concentrated during an initial lab session.
Of these, 81% were course-related, and ChatGPT’s responses were deemed rele-
vant 86% of the time. Despite this, survey data revealed a general reluctance to
rely on the tool: 57% of students feared that over-reliance on ChatGPT might
hinder their learning, and 27% expressed concerns about potential violations of
course rules. Many students preferred solving problems independently, believing
it would lead to better learning outcomes. However, Prasad et al. [I6] study
did not look at prompting proficiency or students’ performance with the LLM.
Our study is the first to explore in an educational context the use of LLMs for
deductive verification, focused on Dafny.

3 Method

3.1 Study Design

Our mixed-methods study consisted of three main components: a Qualtrics-based
survey, two domain-specific Dafny problems, and a custom ChatGPT interface
designed for log collection. Figure [I]illustrates the overall structure of the study.
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&
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Fig. 1: Overview of the study’s methodology

Survey. We deployed the survey using Qualtrics. The survey served as the study’s
entry point and central coordination tool. Participants used the survey to provide
informed consent, receive instructions, and access the exercises. After completing
each problem, participants returned to the survey to upload their work and
respond to follow-up questions. We designed the survey to preserve participant
anonymity throughout.
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Problems. Each participant completed two Dafny problems: Queue and Tree. We
developed these problems iteratively over five pilot runs. Each problem consisted
of two subproblems and reflected realistic and moderately challenging tasks. The
problems were designed to be solved in 30 minutes and to be LLM-resistant [9)].
The two problems were slightly different from each other to mitigate learning
effects, and their order was randomized per participant. Participants had a maxi-
mum of 30 minutes per problem and were instructed to download, complete, and
re-upload the problem files using the lab computers provided during the session.

Both problems are based on a class that represents a data structure, namely
a queue implemented using a circular buffer, and a binary search tree. Each
provides the base code for the class, including the concrete and ghost fields, a
constructor, and the Valid predicate.

Each problem had a subproblem whose goal was to implement a method given
its formal pre- and post-conditions, and another which gave them the natural
language goal of the method and expected them to specify and implement it.
The concrete subproblems are as follows, noting that the methods Dequeue and
Cut already have their pre- and post-conditions defined for the participants:

— CircularBuffer<T>’s Dequeue: a simple method that should pop the first
value from the queue and return it, naming it elem;

— CircularBuffer<T>’s Queue: a method whose goal is to push the received
value to the end of the queue;

— BSTNode’s Cut: a method that receives a maximum height and removes all
the nodes whose height exceeds that value;

— BSTNode’s AddA11: a method whose goal was to add all elements of a sequence
to the binary search tree.

To ensure comparability between the two problems, we conducted a post-hoc
statistical analysis of participants’ performance in the Queue and Tree problems.
We used a paired-sample t-test to compare the grades for the Queue and Tree
problems across all participants, regardless of LLM condition, and found no
statistically significant difference in difficulty between the two problems (¢ =
—0.653, p = 0.525, d = 0.28, 95% CI: [-7.58,4.06]). This result supports the
construct validity of our study.

ChatGPT Platform. We developed a custom web-based interface to provide
controlled access to ChatGPT. This interface replicated the standard ChatGPT
experience but recorded all user prompts and model responses. Each participant
was randomly assigned to use ChatGPT for either the first or second problem.
Those assigned to the ChatGPT condition received an additional link directing
them to our custom platform and were asked to submit a key in the survey to
link their log data with their responses.

The model used was gpt-4_1-2025-04-14 with default parameters. We chose
to develop our own interface for two main reasons: (1) it ensured that all par-
ticipants interacted with the same model under identical interface conditions,
and (2) it simplified prompt logging and helped preserve participant anonymity.
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After logging in, each student received a random ID to enter in the survey. This
ensured anonymity while allowing us to link ChatGPT logs to survey responses.

Experimental Workflow. All participants solved both problems but had access
to ChatGPT in only one of them. We implemented a bucketed randomization
procedure to assign participants to conditions. Rather than using full random
assignment, we balanced the sample so that half of the participants performed
each problem with and without ChatGPT. We used the same method to ran-
domize the order in which ChatGPT appeared. Both problem survey blocks (@
and @ in Figure[l) included (1) instructions and a timer, (2) a link to download
the problem, (3) a file upload field for submitting their work, and (4) follow-up
self-assessment questions. The ChatGPT block (@ in Figure [1)) also included
access to the custom ChatGPT interface and extra questions targeting the per-
ceived usefulness of ChatGPT for different aspects of the task. A final section
collected general demographic information and participants’ broader experiences
with LLMs (@ in Figure .

Ezxperimental Conditions. Participants worked in computer labs without exter-
nal internet access, using only a browser for the survey, our wrapper for Chat-
GPT, and the official Dafny documentation. Each participant used Visual Studio
Code equipped with the official Dafny extension and Dafny v4.10.0 installed lo-
cally.

Recruitment We recruited 14 participants (D in Figure from the 2024/2025
cohort of the master’s-level elective course Formal Methods for Critical Systems
at the Faculty of Engineering, University of Porto, Portugal, taught by the last
author. We recruited participants at the end of the semester after lectures had
ended. This course is part of a Master’s in Informatics and Computing Engi-
neering and is offered during the second term of the first year of the degree.

n % n %
Gender FEducation
Male 12 86% Bachelor’s degree 12 86%
Female 2 14%  Graduate degree 1 ™%
Some college, no degree 1 7%
n % n %
Dafny LLM Usage Al Tools Used
Every time 2 14%  ChatGPT 10 71%
Most times 5 36%  GitHub Copilot 5 43%
Sometimes 5 36%  Gemini 3 21%
Rarely 2 14%  Other 4 29%

Table 1: Participants Demographics
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The course spans 14 weeks, with a weekly three-hour session, where about half
of the time is used for theory and resolution of practical challenges in a tutorial
style, and the other half is used for solving practical exercises independently.
The first half of the course is dedicated to software modelling using Alloy, while
the second half focuses on deductive verification using Dafny. Our study focuses
on the Dafny component of the course.

Participation was entirely voluntary, anonymous, and uncompensated. It was
explicit that involvement would not influence academic performance or standing.
The cohort comprised 16 students — the largest enrollment since the course was
introduced in 2021/2022. Of these, 14 students voluntarily agreed to participate
in the study, resulting in an 87.5% participation rate (O in Figure .

The majority of participants identified as male (n = 12), and a smaller part as
female (n = 2). In our sample, most participants had a Bachelor’s or a Graduate
degree (n = 13). Two participants reported using LLMs every time they worked
on Dafny exercises, ten said they used it most times or sometimes, and two
used it only rarely. When asked about the AT tools they use (Section , most
participants (n = 10) reported using ChatGPT and GitHub Copilot (n = 5).

Pilots. We conducted five pilot sessions to refine the materials and procedure
before deploying the study. Three of the pilot participants were former students
who had previously completed the same Dafny course, and the remaining two had
relevant background knowledge of Dafny. We conducted pilots until we reached
saturation, that is, until no new suggestions or usability issues emerged. We used
pilot data solely for internal feedback and did not include it in the final analysis.

3.2 Analysis

We did qualitative analysis using a double-blind, iterative coding process for the
correctness assessment procedure and for both the prompt analysis and survey
codebooks. Initially, one researcher conducted a first round of open coding and
developed a preliminary version of a codebook. This preliminary codebook was
then handed over to a second researcher, who independently coded the data
and revised the codebook. This iterative process continued until the codebook
stabilized and the coders achieved consensus. The full annotated codebooks are
included in the supplementary materialﬂ

Correctness assessment procedure All participants’ solutions to the sub-
problems (four in total, two for each problem) were evaluated on a 0-20 point
scale (rounded to two decimal places) according to the following criteria:

— First, we divided each subproblem into tasks, which described the steps
needed and expected of their solutions. Each subproblem has its own set of
tasks, not necessarily the same number of them;

3 |Link to Supplementary Material
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— We gave weights for these tasks according to their effort and difficulty. We
also added the possibility of a penalty of, at most, one point, to be used
in case the participant incorrectly added extra steps that made the code
incorrect (e.g., an unnecessary additional contract);

— For each participant, we extracted each line of code and catalogued it ac-
cording to the task they were trying to achieve;

— For each of those, we gave a grade from 0 to 20, according to how well the
task was performed.

In Dafny, the specification — which includes the contracts, invariants, and
ghost variable updates (variables used only for verification purposes) — defines
precisely the expected behaviour of a program, and the implementation provides
the functionality for the program. So, we defined each task to be exclusively part
of the specification or the implementation, also providing a way to calculate their
grades for those specific parts of the methods.

Each participant has a grade for each problem, calculated with the un-
weighted average of their composing subproblem.

Prompt Analysis Our analysis focused on categorizing user prompts and Chat-
GPT responses into three categories:

(1) Prompt characteristics (e.g., type and content): Captures prompt character-
istics (e.g., structure and content), revealing how users initiate interactions.

(2) Retry strategies (i.e., repair techniques): Covers retry strategies, showing
how users revise or reframe prompts after unsatisfactory responses.

(3) Evaluation of the overall user interaction: Summarizes overall interaction
patterns, including LLM reliance, emotional cues, and how closely users fol-
lowed the tool’s output.

Survey Analysis We used quantitative and qualitative methods in our study.

Statistical Analysis. We conducted descriptive and statistical analyses to evalu-
ate the impact of ChatGPT assistance on student performance and self-reported
confidence. Each participant completed two problems: one with ChatGPT as-
sistance and one without. We analyzed the paired grades using a paired-sample
t-test (after a Shapiro-Wilk’s test to guarantee normality) to assess whether
ChatGPT influenced academic performance.

Qualitative Analysis. Our analysis focused on the open-ended responses collected
through the survey, particularly in the section following the ChatGPT-assisted
problem. The main open question was why participants trusted (or not) Chat-
GPT’s responses for the problem. We developed the codebook with an emergent
coding process.
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Ethical Considerations. We did not collect any personal or identifiable data, and
all participants were over 18 years of age. Participants were clearly informed that
they were not required to participate and could withdraw at any time without
penalty. To ensure the activity was also beneficial to participants, we made the
problems and their corresponding solutions available afterwards to all students
enrolled in the course. Prior to taking part in the survey or interview, all partici-
pants reviewed an informed consent form outlining the purpose of the study, the
nature of their involvement, and their rights as participants. Only those who gave
explicit informed consent were allowed to proceed. According to our institution’s
ethical guidelines, research with these characteristics, voluntary participation, no
collection of personal data, and non-invasive procedures, does not require prior
approval from the Ethics Committee. Nonetheless, we adhered to the principles
outlined in the European Commission’s Ethics Self-Assessment guide to ensure
compliance with best practices in ethical research involving human participants.

4 RQ1 Performance

LLM effect on performance. The average grades using and not using the LLM
were 17.39 and 9.36, respectively. All participants achieved a passing grade when
using the LLM, whereas only 5 of the 14 achieved a passing grade without it (P2,
P3, PG, P10, and P11). Also, only one participant (P2) worsened their grade
with the LLM. All of these suggest that LLMs help improve the participants’
grades. We used a paired-sample t-test to compare grades from the solutions with
LLM help to those without, and it showed a statistically significant difference
in performance (p = 0.0002). On average, participants scored 5.04 points higher
(d =1.55,95% C1T : [4.59,11.47]) when accessing ChatGPT.

LLM effect on specification and implementation. The first and second subprob-
lems of each problem have the same goal: the first is to implement a method,
given its specification, and the second is to specify and implement a method
from its natural language description. Comparing participants’ scores for each
subproblem, the aggregated averages with the LLM were 19.52 for the first sub-
problem and 15.26 for the second, compared to 9.90 and 8.82 without the LLM.

We applied a paired t-test to assess whether the observed difference in per-
formance between specification and implementation tasks was statistically sig-
nificant, specifically on the second subproblem (with LLM), which consisted of
both types of task. One outlier was removed to meet normality assumptions,
which were supported by a Shapiro-Wilk test (W = 0.895, p = 0.116). The
test revealed a statistically significant difference in performance (p = 0.003),
with participants scoring on average 2.92 points lower on the specification task
(medium effect size d = 0.54, 95% CT : [—4.64, —1.19]).

LLM effect on confidence. We now look at a particular student case, P5, who
scored zero on the problem without LLM assistance (which was their first prob-
lem) and 19 points with the LLM. In the non-LLM problem, the participant did
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not write a single line of code. Instead, they left comments indicating some steps
of the solution, and also a comment that they felt unable to solve it in the time
available because they were not familiar with the grammar. This self-assessment
is surprising, as the participant had just completed the Dafny component of the
course, including its evaluation. Interestingly, even in the LLM-assisted problem,
where P5 produced a solution that scored nearly full points, the participant re-
ported low confidence in their solution. From the answers to the survey, it was
clear that the participant was not confident at all with his Dafny skills. It is pos-
sible that the fact that their solution did not verify contributed to this continued
lack of confidence, despite their strong objective performance.

This case also shows that, for students who are unable to start solving a task,
like P5, who wrote no code unaided, LLMs show promise in supporting them
through the initial phases of problem-solving. However, it also reinforces a key
limitation: LLMs cannot replace the need for conceptual understanding. While
they can produce code that is syntactically and semantically correct, or near
correct, learners may still feel insecure if they do not grasp the underlying logic,
particularly in a formal system like Dafny.

The usage of LLMs helped improve the grades of the students. However, for
some, its absence was a source of insecurity, which shows that they must be
careful when using these tools. Also, concerning the performance of Chat-
GPT for Dafny, our results suggest that it is better for implementation
tasks than specification ones. The properties of code currently available on-
line, which predominantly does not include contracts or specifications, can
explain this difference.

5 RQ2 LLM Interaction

In total, the ChatGPT interface collected 206 messages: 103 student prompts
and 103 ChatGPT responses. To explore how students interact with ChatGPT
during deductive verification tasks, we first analyze the coded prompts. The
supplementary material provides the full codebook, along with category counts
and user distributions. This section is divided into two sub-research questions.

5.1 RQ2.1 How do students interact with ChatGPT when solving
deductive verification problems?

Prompt characteristics. Twelve students used instruction-based prompts (34 to-
tal), and eight question-based prompts (23 total), as students could use both in
the same prompt. Most (12/14) included the full class definition in at least one
prompt to provide necessary context.

Retry Strategies. The most common repair strategy was adding error messages
to the prompt, which was used by twelve students in 43 prompts, followed by



Can Large Language Models Help Students Prove Software Correctness? 11

including problematic code lines used by 12 students in 26 prompts, and finally by
redirecting the LLM used by seven students in eight prompts. Redirecting refers
to suggesting a specific approach for the LLM to use in solving the problem.

Owerall User Interaction. Six students relied solely on prompting without mod-
ifying the LLM-generated code. Four made minor edits to LLM generated code,
while another four were largely autonomous, using the LLM sparingly and per-
forming manual modifications. Two students started with partial implementa-
tions. In terms of emotional engagement, three students showed signs of frustra-
tion (e.g., P2 prompting the LLM with “did not help!” after two repeated wrong
responses) during the interaction, while two expressed clear satisfaction (e.g.,
P6 prompting LLM after a correct response “it was strengthening the invariants,
thank you”).

Most students were able to prompt the LLM effectively by providing suffi-
cient context, such as including the full class definition, which proved critical
for solving deductive verification tasks. Error-driven prompt refinement was
the most common repair strategy, particularly by adding error messages and
problematic code lines to guide the LLM. While nearly all students managed
to extract either correct functionality or specifications from ChatGPT, only
a subset (7/14 for subproblem 1 and 2/14 for subproblem 2) succeeded in
obtaining fully verified solutions without significant manual intervention.

5.2 RQ2.2 What strategies do more successful students employ
when solving Dafny problems?

To explore this, we divided participants into three groups based on their perfor-
mance in the LLM-based exercise. G1 includes the top five performers (scores
19 and 20), G2 the next four (scores 17 and 18), and G3 the remaining five
participants (scores 10 through 16) that had the lowest scores. In Figure [2[ we
show the interaction metrics for each group. Due to space restrictions, only the
codes (from the codebook) mentioned in this paper are detailed in Section [5.2
For information about all codes, please consult the supplementary materials®|

Prompt characteristics. Analysis of classCopy shows that all five participants
in G1 included class definitions in their prompts, compared to three out of four
in G2 and four out of five in G3. Providing this context was often essential for the
LLM to generate a correct solution. For instance, P14 from G3 consistently failed
to include sufficient information about the class and its methods, forcing the
LLM to make assumptions about the surrounding code and ultimately leading
to incorrect outputs.

4|Link to Supplementary Material
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Code Description

classCopy User copies the entire class in the prompt
reduceToOneSubproblem Focuses on a single subproblem or method
redirect Guides the LLM or teaches Dafny concepts
overlyComplex Includes unnecessary complexity (lemmas, aux vars)
promptingOnly User only interacted with LLM until solution
mostlyPrompting Mostly used LLM, with minimal manual edits
mostlyAutonomous Mostly implemented code independently
startsWithPartial Started with partial user implementation

Table 2: Codes used in the qualitative comparison of interaction patterns

121 Bl G3 (5 participants)
I G2 (4 participants)
Hm Gl (5 partipants)

Number of Participants

N A\ (et \e* M A0 S o\
o 355009 S“w(ob\e ‘ed\(e \ (,0‘“9 mp‘“‘go“ apt “of“° KS\N\‘“?B‘
one o o

(0! )
ove™ mosm" o !

Fig. 2: Qualitative comparison of interaction patterns across participant groups
(G1-G3), based on selected codes that reflect bigger differences between groups.

Retry Strategies. A notable difference between groups emerged in the use of
redirect strategies. Only one participant in G1 attempted to redirect the LLM,
compared to three participants in both G2 and G3. These redirections often
led the LLM to engage in unnecessarily complex reasoning, such as introducing
superfluous lemmas, without actually addressing the root problem. This was
particularly evident in the case of P9, who persistently asked the LLM to use
lemmas after it became stuck. Instead of resolving the issue, these redirections
led to increasingly convoluted responses, ultimately keeping the LLM stuck.
Consequently, two G3 participants were labeled as producing overlyComplex
outputs, a pattern not seen in G1 or G2.

In contrast to the unproductive redirections seen above, P12 from G2 demon-
strated a successful use of redirect. When the LLM became stuck while han-
dling a ghost variable separation issue, P12 did not ask it to fix the code di-
rectly. Instead, they redirected the model by asking which variable could replace
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the problematic one. The LLM correctly suggested substituting ‘capacity’ with
‘buffer.Length’. Though the model was unable to make the fix itself, the partic-
ipant manually applied the suggestion and arrived at a correct solution.

Interestingly, G1 participants more frequently employed the reduceToOne-
Subproblem strategy, which appeared in three cases, compared to only once
in each of the other groups. This approach allowed the LLM to focus solely on
a single subproblem, simplifying its overall task.

Owerall User Interaction. User initiative varied noticeably across groups. In G1,
only one participant relied solely on prompting (promptingOnly). Remarkably,
this participant (P8) solved both subproblems of the Tree problem with a single
prompt that included the entire Dafny file followed by the instruction “solve this”.
This level of success in a single attempt was not observed in any other group. A
similar case occurred with P6, also from G1, who used a slightly different prompt
for the same problem. However, P6 did not recognize the correctness of the
LLM’s response and instead began directing it to revise the code. These examples
illustrate the non-deterministic behavior of LLMs: identical or similar prompts
can yield different outcomes, and even when a correct solution is generated, users
may need sufficient domain knowledge to recognize and apply it.

In contrast, two participants in G2 and three in G3 also relied exclusively on
prompting, but without the same level of success. G1 stood out for having more
participants classified as mostly Autonomous. It was also the only group in
which two participants began with a partial implementation (start WithPartial),
suggesting a proactive approach to structuring their interaction with the LLM.

Better outcomes were not solely determined by prompt quantity or persis-
tence, but by strategic interaction choices. High-performing students were
more likely to: (i) include class context early, (ii) reduce the prompt to
ask only a single subproblem, (iii) avoid overcomplicating the LLM’s task
through redirection, and (iv) contribute with their own partial implementa-
tions. More successful students were also more autonomous, often making
substantial modifications to the code provided by the LLM rather than re-
lying on it verbatim.

6 RQ3 Trust

We asked participants if they trusted ChatGPT’s responses during the Dafny
exercise and why. Overall, participants expressed mixed attitudes. Of the 14
students, seven trusted the LLM and seven distrusted it (see Figure (3.

Reasons for Trust. The seven students who reported trust in ChatGPT cited
several reasons. The most common was that it produced accurate code, men-
tioned by three participants. For example, P3, “Strongly” trusted ChatGPT and
mentioned “I resorted to ChatGPT and it solved my mistakes immediately.”.
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Fig. 3: Participants’ responses to whether they trusted ChatGPT during the
exercise with a 5-point Likert scale

Two students also mentioned that they trusted the LLM because they could
independently verify ChatGPT’s suggestions with Dafny built-in verification, as
P4 described “ Because with Dafny it’s easy to assert if its suggestion is correct
or not.”. The two remaining codes were only mentioned by one participant each.
P9 mentioned that they trusted ChatGPT because it helped them “understand
key concepts” and P12 mentioned ChatGPT was better than nothing, saying “I
don’t feel that comfortable in Dafny, so in my case (...) I have to trust.”

Reasons for Distrust. Seven students distrusted ChatGPT, and of these, four
distrusted it because of syntax errors, as it often produced invalid Dafny code
that required manual correction (“responses (...) contain one or two little er-
rors, they are sometimes easy to find (...) but [I] still need to be careful.”, P8).
Two participants distrusted the LLM because it was overconfident when wrong.
One participant mentioned directly hallucinated features (“[it] kept insisting on
wrong suggestions, sometimes suggested things that do not exist”, P2). For one
participant, distrust came from prior experiences with ChatGPT rather than the
current study, and another said that ChatGPT is not useful for verification.

What Influences Trust? Students’ levels of trust may not be fully aligned with
their performance. One example is P5, who scored zero without ChatGPT but
had a near-perfect solution with it. Despite this improvement, the participant
still distrusted the LLM’s output. While ChatGPT can help students complete
tasks more successfully, it does not automatically increase their confidence be-
cause if it produces correct code that students do not fully understand, they may
remain skeptical, even in the face of strong objective performance. On the other
hand, some students appeared to place significant trust in ChatGPT without
much critical evaluation. For instance, participant P3 noted that they were tired,
turned to ChatGPT, and it produced code quickly, so they “strongly trusted” it.

Students’ trust in ChatGPT appears to be influenced by several factors: the
technical correctness of responses, the presence of verification feedback (via
Dafny), students’ confidence in formal methods, and prior experience with
AT tools.

7 Discussion

In this section, we reflect on the broader pedagogical implications of our findings.
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7.1 Implications for CS Pedagogy

Success Does Not Equal Understanding. Our results suggest that good
scores with LLM do not necessarily reflect deeper understanding or trust. We
saw cases of participants who improved their performance with the LLM and still
distrusted it. So, while LLMs can enable students to progress where they might
otherwise stall, it does not automatically help learning or understanding. This
disconnect raises important questions about dependency, as students may rely on
LLMs as a substitute for their reasoning, consistent with prior work [6/I8]. Our
survey data offers preliminary support for this concern. Four of the five students
who scored above 10 (out of 20) on the unaided problem reported using LLMs
“sometimes” or “rarely” outside the study. In contrast, the one student in this
group who used LLMs “most of the time” performed the worst.

For educators, these findings present both a challenge and an opportunity.
If LLMs are allowed in the classroom, instructors should monitor how students
use them. Some students may achieve better scores while blindly accepting the
LLM’s output, which can mask deeper learning issues. Identifying these pat-
terns can serve as a diagnostic tool. Since all students in our study reported
using LLMs outside the experiment, classroom tools designed to track LLM in-
teractions (like the one we used) can help detect usage patterns and support a
more targeted intervention.

Prompt Design is Critical. Our findings suggest that the benefits of Chat-
GPT in Dafny exercises depend on how students use the LLM. High-performing
students tended to write prompts with all relevant context and focused on solving
one subproblem at a time. In contrast, lower-performing students often omitted
crucial details and redirected the LLM to overly complex solutions. Students who
experimented with and modified the LLM’s output made more progress than
those who simply copied responses and relied on repeated prompting. These re-
sults align with prior research, where prompt quality determines LLM support’s
effectiveness in formal methods education [2]. All participants reported using
LLMs outside the classroom when working on Dafny exercises, so ineffective
prompting practices may not be limited to the experimental setting and may be
affecting students’ independent learning as well.

For educators, this highlights the need to explicitly teach productive prompt-
ing strategies rather than simply allowing or discouraging LLM use. Structured
prompting templates, or examples, could scaffold the learning process and help
students internalize good practices over time. The prompting strategies that
proved effective in our study may be transferable to other programming tasks.
Our results suggest that educators should encourage students to think criti-
cally before using LLMs, avoid overly complex solutions, and treat the LLM as
a support tool. Breaking down larger problems into smaller steps also seems
an effective strategy when working with LLMs. Future work should explore
whether teaching prompt design directly leads to improved learning outcomes
and whether these benefits generalize across domains.
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Designing LLM-Resistant Challenges is not Trivial. One of the main chal-
lenges we encountered was developing problems that LLMs could not solve in-
stantaneously. We wanted to write complex but solvable exercises and found that
ChatGPT could immediately solve many complex exercises (e.g., from Dafny-
Bench [8]). We designed our challenges from scratch, independent of existing
online problems. We iteratively tuned problem complexity to balance difficulty
and solution time with five pilot rounds. We found that LL.M-resistant problems
are challenging to design, even taking into consideration best practices [9].

For educators, our insights show that they must consider what students and
LLMs can do. Some design decisions in our problems contributed to increased
LLM resistance (e.g., constrained the solution to our defined class invariants,
predefined contracts, and selected ghost variables— which are not usable in the
implementation). These elements reduced the degree of freedom in the solution
space, a known strategy for LLM resistance [9].

Our results revealed that ChatGPT struggled more with specification tasks
than with implementation. Educators can design exercises focused on specifica-
tions (e.g., writing contracts) as these may be less vulnerable to LLM assistance.
This insight also has broader implications beyond education. In industrial con-
texts, they motivate a shift towards specification quality and completeness. If a
company uses an LLM assistant for verification, they should focus the human
input on the specification and design of correctness properties rather than the
implementation itself.

7.2 Limitations

As with all empirical studies, there are some limitations to our research. First,
our sample size was relatively small (14 participants), reflecting the voluntary
participation of students enrolled in a specialized formal methods course. We
advise future work to look into replicating our protocol on a larger scale. Some
of our results can be affected by factors related to task sequence or prior famil-
iarity with Dafny. To address this, we designed tasks of comparable difficulty,
randomized the order of tasks, assigned ChatGPT access, and conducted multi-
ple pilot sessions. Finally, our study focused on interactions with a single LLM,
ChatGPT, accessed through a custom web interface. This allowed control over
the user experience and interaction logs, but it may not fully represent students’
real-world LLM use. Our findings may not generalize to other LLM platforms.

8 Conclusion

Can large language models help students prove software correctness? Our findings
suggest that the answer is yes, but with important caveats. Students performed
significantly better with LLM support, especially in implementation tasks. How-
ever, LLM’s effectiveness depended on students’ interaction strategies. Success
requires good prompt design and full program context. LLMs can be valuable
assistants for proving software correctness, not as solvers but as collaborators
whose utility depends on how students use them.
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